15/11/2023
Imagine you could go back in time 4.6 billion years and take a picture of our Sun just as it was being born. What would it look like?
Well, you can get a clue from this glorious new image acquired by the James Webb Space Telescope (JWST).
Towards the centre of this object, called HH212, is a star coming into existence that is probably no more than 50,000 years old.
The scene would have looked much the same when our Sun was a similar age.
You can't actually see the glow from the protostar itself because it's hidden within a dense, spinning disc of gas and dust.
All you get are the pinky-red jets that it's shooting out in polar opposite directions.
Webb telescope makes 'JuMBO' discovery in Orion
Why finding alien life is now 'only a matter of time'
A $10bn machine in search of the end of darkness
HH212 is sited in Orion, close to the three brilliant stars that make up the "belt" of the mythical hunter that gives the constellation its name. The distance from Earth is about 1,300 light-years.
Physics suggests those dramatic outflows of gas are the means by which the nascent star regulates its birthing.
"As the blobby ball of gas at the centre compacts down, it rotates. But if it rotates too fast, it will fly apart, so something has to get rid of the angular momentum," explained Prof Mark McCaughrean.
"We think it's jets and outflows. We think that as all the material shrinks down, magnetic fields are pulled together and then some of the material coming in through the disc gets captured on magnetic fields and is thrown out through the poles. That's why we call these structures bi-polar," the European Space Agency senior scientific advisor told BBC News.
The pinky-red colour denotes the presence of molecular hydrogen. That's two hydrogen atoms bonded together (rather like the "HH" in the protostar's name). Shockwaves are moving through the outflows, energising them and making them glow brightly in this Webb picture, which was captured predominantly at the infrared wavelength of 2.12 microns (that's the second part of the protostar's name!).