
14/07/2025
๐ ๐ช๐ต๐ฒ๐ป ๐ง๐ถ๐ป๐๐ ๐ ๐ ๐ผ๐ฑ๐ฒ๐น๐ ๐๐ฎ๐ถ๐น ๐ฆ๐ถ๐น๐ฒ๐ป๐๐น๐
You quantized the model.
You deployed it.
No crash. No errors.
Just... bad results.
Welcome to ๐ฑ๐ฒ๐ฏ๐๐ด๐ด๐ถ๐ป๐ด ๐ง๐ถ๐ป๐๐ ๐โwhere your float32 model runs perfectly on your laptop, but gives nonsense on-device. ๐ฏ
Here are some ๐ฟ๐ฒ๐ฎ๐น ๐ฐ๐๐น๐ฝ๐ฟ๐ถ๐๐ weโve run into:
๐ธ Silent overflows during inference (int8 woes ๐ตโ๐ซ)
๐ธ Preprocessing drift between Python + C versions
๐ธ Missing ops in TFLite Micro
๐ธ Unstable sensor data or out-of-distribution inputs
๐ธ Tiny memory overflows (especially with circular buffers)
๐ก Debugging edge ML isnโt just โcheck your logs.โ Itโs timing, memory, quantization, and signal integrityโall in one.
๐๐ฒ๐น๐น๐ผ๐ ๐ฒ๐บ๐ฏ๐ฒ๐ฑ๐ฑ๐ฒ๐ฑ ๐ ๐ ๐ฒ๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐:
๐ ๏ธ ๐ช๐ต๐ฎ๐โ๐ ๐๐ต๐ฒ ๐๐ฒ๐ถ๐ฟ๐ฑ๐ฒ๐๐ ๐ฏ๐๐ด ๐๐ผ๐โ๐๐ฒ ๐ต๐ถ๐ ๐๐ถ๐๐ต ๐ง๐ถ๐ป๐๐ ๐?
๐ฏ Whatโs your best trick for figuring out why the model misbehaves on-device?
๐ ๐ซ๐๐๐ ๐๐๐๐ ๐๐๐๐๐๐๐ ๐๐ ๐๐๐ ๐๐๐๐๐๐๐๐ โ ๐๐โ๐๐ ๐๐๐๐๐๐๐ ๐๐๐๐ ๐๐ ๐๐๐ ๐๐๐๐ ๐๐๐๐ ๐๐๐๐ ๐๐๐๐.