Amie Of Ieb Supporters Group

Amie Of Ieb Supporters Group Amie Of Ieb Supporters Group

đŸ’Ĩ āϟāĻžāĻ°ā§āϗ⧇āϟ: ā§Ēā§­ āĻ“ ā§Ē⧝āϤāĻŽ āĻŦāĻŋāϏāĻŋāĻāϏ!đŸŽ¯ āĻāĻ• āύāϜāϰ⧇ āĻ—āĻŖāĻŋāϤ⧇āϰ āϏāĻ•āϞ āϏ⧂āĻ¤ā§āϰ-✅ āĻŦā§€āϜāĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϏ⧂āĻ¤ā§āϰāĻžāĻŦāϞ⧀1.🚩 (a+b)²= a²+2ab+b²2.🚩 (a+b)²= (a-b)²+4ab...
18/09/2025

đŸ’Ĩ āϟāĻžāĻ°ā§āϗ⧇āϟ: ā§Ēā§­ āĻ“ ā§Ē⧝āϤāĻŽ āĻŦāĻŋāϏāĻŋāĻāϏ!
đŸŽ¯ āĻāĻ• āύāϜāϰ⧇ āĻ—āĻŖāĻŋāϤ⧇āϰ āϏāĻ•āϞ āϏ⧂āĻ¤ā§āϰ-
✅ āĻŦā§€āϜāĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϏ⧂āĻ¤ā§āϰāĻžāĻŦāϞ⧀
1.🚩 (a+b)²= a²+2ab+b²
2.🚩 (a+b)²= (a-b)²+4ab
3.🚩 (a-b)²= a²-2ab+b²
4.🚩 (a-b)²= (a+b)²-4ab
5.🚩 a² + b²= (a+b)²-2ab.
6.🚩 a² + b²= (a-b)²+2ab.
7.🚩 a²-b²= (a +b)(a -b)
8.🚩 2(a²+b²)= (a+b)²+(a-b)²
9.🚩 4ab = (a+b)²-(a-b)²
10.🚩 ab = {(a+b)/2}²-{(a-b)/2}²
11.🚩 (a+b+c)² = a²+b²+c²+2(ab+bc+ca)
12.🚩 (a+b)Âŗ = aÂŗ+3a²b+3ab²+bÂŗ
13.🚩 (a+b)Âŗ = aÂŗ+bÂŗ+3ab(a+b)
14.🚩 a-b)Âŗ= aÂŗ-3a²b+3ab²-bÂŗ
15.🚩 (a-b)Âŗ= aÂŗ-bÂŗ-3ab(a-b)
16.🚩 aÂŗ+bÂŗ= (a+b) (a²-ab+b²)
17.🚩 aÂŗ+bÂŗ= (a+b)Âŗ-3ab(a+b)
18.🚩 aÂŗ-bÂŗ = (a-b) (a²+ab+b²)
19.🚩 aÂŗ-bÂŗ = (a-b)Âŗ+3ab(a-b)
20. (a² + b² + c²) = (a + b + c)² – 2(ab + bc + ca)
21.🚩 2 (ab + bc + ca) = (a + b + c)² – (a² + b² + c²)
22.🚩 (a + b + c)Âŗ = aÂŗ + bÂŗ + cÂŗ + 3 (a + b) (b + c) (c + a)
23.🚩 aÂŗ + bÂŗ + cÂŗ – 3abc =(a+b+c)(a² + b²+ c²–ab–bc– ca)
24.🚩 a3 + b3 + c3 – 3abc =ÂŊ (a+b+c) { (a–b)²+(b–c)²+(c–a)²}
25.🚩(x + a) (x + b) = x² + (a + b) x + ab
26.🚩 (x + a) (x – b) = x² + (a – b) x – ab
27.🚩 (x – a) (x + b) = x² + (b – a) x – ab
28.🚩 (x – a) (x – b) = x² – (a + b) x + ab
29.🚩 (x+p) (x+q) (x+r) = xÂŗ + (p+q+r) x² + (pq+qr+rp) x +pqr
30.🚩 bc (b-c) + ca (c- a) + ab (a - b) = - (b - c) (c- a) (a - b)
31.🚩 a² (b- c) + b² (c- a) + c² (a - b) = -(b-c) (c-a) (a - b)
32.🚩 a (b² - c²) + b (c² - a²) + c (a² - b²) = (b - c) (c- a) (a - b)
33.🚩 aÂŗ (b - c) + bÂŗ (c-a) +cÂŗ (a -b) =- (b-c) (c-a) (a - b)(a + b + c)
34.🚩 b²-c² (b²-c²) + c²a²(c²-a²)+a²b²(a²-b²)=-(b-c) (c-a) (a-b) (b+c) (c+a) (a+b)
35.🚩 (ab + bc+ca) (a+b+c) - abc = (a + b)(b + c) (c+a)
36.🚩 (b + c)(c + a)(a + b) + abc = (a + b +c) (ab + bc + ca)
_____________________________________________
đŸŽ¯āφāϝāĻŧāϤāĻ•ā§āώ⧇āĻ¤ā§āϰ
1.āφāϝāĻŧāϤāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = (āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ × āĻĒā§āϰāĻ¸ā§āĻĨ) āĻŦāĻ°ā§āĻ— āĻāĻ•āĻ•
2.āφāϝāĻŧāϤāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻĒāϰāĻŋāϏ⧀āĻŽāĻž = 2 (āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ+āĻĒā§āϰāĻ¸ā§āĻĨ)āĻāĻ•āĻ•
3.āφāϝāĻŧāϤāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻ•āĻ°ā§āĻŖ = √(āĻĻ⧈āĻ°ā§āĻ˜ā§āĻ¯Â˛+āĻĒā§āϰāĻ¸ā§āĻĨ²)āĻāĻ•āĻ•
4.āφāϝāĻŧāϤāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ= āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāĻ˛ÃˇāĻĒā§āϰāĻ¸ā§āϤ āĻāĻ•āĻ•
5.āφāϝāĻŧāϤāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻĒā§āϰāĻ¸ā§āϤ= āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāĻ˛ÃˇāĻĻ⧈āĻ°ā§āĻ˜ā§āϝ āĻāĻ•āĻ•
_____________________________________________
đŸŽ¯āĻŦāĻ°ā§āĻ—āĻ•ā§āώ⧇āĻ¤ā§āϰ
1.āĻŦāĻ°ā§āĻ—āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = (āϝ⧇ āϕ⧋āύ āĻāĻ•āϟāĻŋ āĻŦāĻžāĻšā§āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ)² āĻŦāĻ°ā§āĻ— āĻāĻ•āĻ•
2.āĻŦāĻ°ā§āĻ—āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻĒāϰāĻŋāϏ⧀āĻŽāĻž = 4 × āĻāĻ• āĻŦāĻžāĻšā§āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ āĻāĻ•āĻ•
3.āĻŦāĻ°ā§āĻ—āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻ•āĻ°ā§āĻŖ=√2 × āĻāĻ• āĻŦāĻžāĻšā§āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ āĻāĻ•āĻ•
4.āĻŦāĻ°ā§āĻ—āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻŦāĻžāĻšā§=√āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āĻŦāĻž āĻĒāϰāĻŋāϏ⧀āĻŽāĻžÃˇ4 āĻāĻ•
_____________________________________________
đŸŽ¯āĻ¤ā§āϰāĻŋāĻ­ā§‚āϜ
1.āϏāĻŽāĻŦāĻžāĻšā§ āĻ¤ā§āϰāĻŋāĻ­ā§‚āĻœā§‡āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = √ž×(āĻŦāĻžāĻšā§)²
2.āϏāĻŽāĻŦāĻžāĻšā§ āĻ¤ā§āϰāĻŋāĻ­ā§‚āĻœā§‡āϰ āωāĻšā§āϚāϤāĻž = √3/2×(āĻŦāĻžāĻšā§)
3.āĻŦāĻŋāώāĻŽāĻŦāĻžāĻšā§ āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = √s(s-a) (s-b) (s-c)
āĻāĻ–āĻžāύ⧇ a, b, c āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āϤāĻŋāύāϟāĻŋ āĻŦāĻžāĻšā§āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ, s=āĻ…āĻ°ā§āϧāĻĒāϰāĻŋāϏ⧀āĻŽāĻž
★āĻĒāϰāĻŋāϏ⧀āĻŽāĻž 2s=(a+b+c)
4āϏāĻžāϧāĻžāϰāĻŖ āĻ¤ā§āϰāĻŋāĻ­ā§‚āĻœā§‡āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = ÂŊ
(āĻ­ā§‚āĻŽāĻŋ×āωāĻšā§āϚāϤāĻž) āĻŦāĻ°ā§āĻ— āĻāĻ•āĻ•
5.āϏāĻŽāϕ⧋āĻŖā§€ āĻ¤ā§āϰāĻŋāĻ­ā§‚āĻœā§‡āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = ÂŊ(a×b)
āĻāĻ–āĻžāύ⧇ āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āϏāĻŽāϕ⧋āĻŖ āϏāĻ‚āϞāĻ—ā§āύ āĻŦāĻžāĻšā§āĻĻā§āĻŦāϝāĻŧ a āĻāĻŦāĻ‚ b.
6.āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āĻ¤ā§āϰāĻŋāĻ­ā§‚āĻœā§‡āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = 2√4b²-a²/4 āĻāĻ–āĻžāύ⧇, a= āĻ­ā§‚āĻŽāĻŋ; b= āĻ…āĻĒāϰ āĻŦāĻžāĻšā§āĨ¤
7.āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āωāĻšā§āϚāϤāĻž = 2(āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ/āĻ­ā§‚āĻŽāĻŋ)
8.āϏāĻŽāϕ⧋āĻŖā§€ āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āĻ…āϤāĻŋāϭ⧁āϜ =√ āϞāĻŽā§āĻŦ²+āĻ­ā§‚āĻŽāĻŋ²
9.āϞāĻŽā§āĻŦ =√āĻ…āϤāĻŋāĻ­ā§‚āĻœÂ˛-āĻ­ā§‚āĻŽāĻŋ²
10.āĻ­ā§‚āĻŽāĻŋ = √āĻ…āϤāĻŋāĻ­ā§‚āĻœÂ˛-āϞāĻŽā§āĻŦ²
11.āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āωāĻšā§āϚāϤāĻž = √b² - a²/4
āĻāĻ–āĻžāύ⧇ a= āĻ­ā§‚āĻŽāĻŋ; b= āϏāĻŽāĻžāύ āĻĻ⧁āχ āĻŦāĻžāĻšā§āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝāĨ¤
12.★āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āĻĒāϰāĻŋāϏ⧀āĻŽāĻž=āϤāĻŋāύ āĻŦāĻžāĻšā§āϰ āϏāĻŽāĻˇā§āϟāĻŋ
_____________________________________________
đŸŽ¯āϰāĻŽā§āĻŦāϏ
1.āϰāĻŽā§āĻŦāϏ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = ÂŊ× (āĻ•āĻ°ā§āĻŖāĻĻ⧁āχāϟāĻŋāϰ āϗ⧁āĻŖāĻĢāϞ)
2.āϰāĻŽā§āĻŦāϏ⧇āϰ āĻĒāϰāĻŋāϏ⧀āĻŽāĻž = 4× āĻāĻ• āĻŦāĻžāĻšā§āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ
____________________________________________
đŸŽ¯āϏāĻžāĻŽāĻžāĻ¨ā§āϤāϰāĻŋāĻ•
1.āϏāĻžāĻŽāĻžāĻ¨ā§āϤāϰāĻŋāϕ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = āĻ­ā§‚āĻŽāĻŋ × āωāĻšā§āϚāϤāĻž =
2.āϏāĻžāĻŽāĻžāĻ¨ā§āϤāϰāĻŋāϕ⧇āϰ āĻĒāϰāĻŋāϏ⧀āĻŽāĻž = 2×(āϏāĻ¨ā§āύāĻŋāĻšāĻŋāϤ āĻŦāĻžāĻšā§āĻĻā§āĻŦāϝāĻŧ⧇āϰ āϏāĻŽāĻˇā§āϟāĻŋ)
_____________________________________________
đŸŽ¯āĻŸā§āϰāĻžāĻĒāĻŋāϜāĻŋāϝāĻŧāĻžāĻŽ
1. āĻŸā§āϰāĻžāĻĒāĻŋāϜāĻŋāϝāĻŧāĻžāĻŽā§‡āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ =ÂŊ×(āϏāĻŽāĻžāĻ¨ā§āϤāϰāĻžāϞ āĻŦāĻžāĻšā§ āĻĻ⧁āχāϟāĻŋāϰ āϝāĻžā§‡āĻ—āĻĢāϞ)×āωāĻšā§āϚāϤāĻž
_____________________________________________
āϘāύāĻ•
1.āϘāύāϕ⧇āϰ āϘāύāĻĢāϞ = (āϝ⧇āϕ⧋āύ āĻŦāĻžāĻšā§)Âŗ āϘāύ āĻāĻ•āĻ•
2.āϘāύāϕ⧇āϰ āϏāĻŽāĻ—ā§āϰāϤāϞ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = 6× āĻŦāĻžāĻšā§Â˛ āĻŦāĻ°ā§āĻ— āĻāĻ•āĻ•
3.āϘāύāϕ⧇āϰ āĻ•āĻ°ā§āĻŖ = √3×āĻŦāĻžāĻšā§ āĻāĻ•āĻ•
_____________________________________________
đŸŽ¯āφāϝāĻŧāϤāϘāύāĻ•
1.āφāϝāĻŧāϤāϘāύāϕ⧇āϰ āϘāύāĻĢāϞ = (āĻĻā§ˆā§°ā§āϘāĻžÃ—āĻĒā§āϰāĻ¸ā§āĻ¤Ã—āωāĻšā§āϚāϤāĻž) āϘāύ āĻāĻ•āĻ•
2.āφāϝāĻŧāϤāϘāύāϕ⧇āϰ āϏāĻŽāĻ—ā§āϰāϤāϞ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = 2(ab + bc + ca) āĻŦāĻ°ā§āĻ— āĻāĻ•āĻ•
[ āϝ⧇āĻ–āĻžāύ⧇ a = āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ b = āĻĒā§āϰāĻ¸ā§āϤ c = āωāĻšā§āϚāϤāĻž ]
3.āφāϝāĻŧāϤāϘāύāϕ⧇āϰ āĻ•āĻ°ā§āĻŖ = √a²+b²+c² āĻāĻ•āĻ•
4. āϚāĻžāϰāĻŋ āĻĻ⧇āĻ“āϝāĻŧāĻžāϞ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = 2(āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ + āĻĒā§āϰāĻ¸ā§āĻĨ)×āωāĻšā§āϚāϤāĻž
_____________________________________________
đŸŽ¯āĻŦ⧃āĻ¤ā§āϤ
1.āĻŦ⧃āĻ¤ā§āϤ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = Ī€r²=22/7r² {āĻāĻ–āĻžāύ⧇ Ī€=āĻ§ā§āϰ⧁āĻŦāĻ• 22/7, āĻŦ⧃āĻ¤ā§āϤ⧇āϰ āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ= r}
2. āĻŦ⧃āĻ¤ā§āϤ⧇āϰ āĻĒāϰāĻŋāϧāĻŋ = 2Ī€r
3. āĻ—ā§‹āϞāϕ⧇āϰ āĻĒ⧃āĻˇā§āĻ āϤāϞ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = 4Ī€r² āĻŦāĻ°ā§āĻ— āĻāĻ•āĻ•
4. āĻ—ā§‹āϞāϕ⧇āϰ āφāϝāĻŧāϤāύ = 4Ī€rÂŗÃˇ3 āϘāύ āĻāĻ•āĻ•
5. h āωāĻšā§āϚāϤāĻžāϝāĻŧ āϤāϞāĻšā§āĻšā§‡āĻĻ⧇ āĻ‰ā§ŽāĻĒāĻ¨ā§āύ āĻŦ⧃āĻ¤ā§āϤ⧇āϰ āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ = √r²-h² āĻāĻ•āĻ•
6.āĻŦ⧃āĻ¤ā§āϤāϚāĻžāĻĒ⧇āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ s=Ī€rθ/180° ,
āĻāĻ–āĻžāύ⧇ θ =āϕ⧋āĻŖ
_____________________________________________
đŸŽ¯āϏāĻŽāĻŦ⧃āĻ¤ā§āϤāĻ­ā§‚āĻŽāĻŋāĻ• āϏāĻŋāϞāĻŋāĻ¨ā§āĻĄāĻžāϰ / āĻŦ⧇āϞāύ
āϏāĻŽāĻŦ⧃āĻ¤ā§āϤāĻ­ā§‚āĻŽāĻŋāĻ• āϏāĻŋāϞāĻŋāĻ¨ā§āĻĄāĻžāϰ⧇āϰ āĻ­ā§‚āĻŽāĻŋāϰ āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ r āĻāĻŦāĻ‚ āωāĻšā§āϚāϤāĻž h āφāϰ āĻšā§‡āϞāĻžāύ⧋ āϤāϞ⧇āϰ āωāĻšā§āϚāϤāĻž l āĻšāϞ⧇,
1.āϏāĻŋāϞāĻŋāĻ¨ā§āĻĄāĻžāϰ⧇āϰ āφāϝāĻŧāϤāύ = Ī€r²h
2.āϏāĻŋāϞāĻŋāĻ¨ā§āĻĄāĻžāϰ⧇āϰ āĻŦāĻ•ā§āϰāϤāϞ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ (āϏāĻŋāĻāϏāĻ) = 2Ī€rhāĨ¤
3.āϏāĻŋāϞāĻŋāĻ¨ā§āĻĄāĻžāϰ⧇āϰ āĻĒ⧃āĻˇā§āĻ āϤāϞ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ (āϟāĻŋāĻāϏāĻ) = 2Ī€r (h + r)
_____________________________________________
đŸŽ¯āϏāĻŽāĻŦ⧃āĻ¤ā§āϤāĻ­ā§‚āĻŽāĻŋāĻ• āϕ⧋āĻŖāĻ•
āϏāĻŽāĻŦ⧃āĻ¤ā§āϤāĻ­ā§‚āĻŽāĻŋāĻ• āĻ­ā§‚āĻŽāĻŋāϰ āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ r āĻāĻŦāĻ‚ āωāĻšā§āϚāϤāĻž h āφāϰ āĻšā§‡āϞāĻžāύ⧋ āϤāϞ⧇āϰ āωāĻšā§āϚāϤāĻž l āĻšāϞ⧇,
1.āϕ⧋āĻŖāϕ⧇āϰ āĻŦāĻ•ā§āϰāϤāϞ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ= Ī€rl āĻŦāĻ°ā§āĻ— āĻāĻ•āĻ•
2.āϕ⧋āĻŖāϕ⧇āϰ āϏāĻŽāϤāϞ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ= Ī€r(r+l) āĻŦāĻ°ā§āĻ— āĻāĻ•āĻ•
3.āϕ⧋āĻŖāϕ⧇āϰ āφāϝāĻŧāϤāύ= â…“Ī€r²h āϘāύ āĻāĻ•āĻ•
✮āĻŦāĻšā§āϭ⧁āĻœā§‡āϰ āĻ•āĻ°ā§āϪ⧇āϰ āϏāĻ‚āĻ–ā§āϝāĻž= n(n-3)/2
✮āĻŦāĻšā§āϭ⧁āĻœā§‡āϰ āϕ⧋āĻŖāϗ⧁āϞāĻŋāϰ āϏāĻŽāĻˇā§āϟāĻŋ=(2n-4)āϏāĻŽāϕ⧋āĻŖ
āĻāĻ–āĻžāύ⧇ n=āĻŦāĻžāĻšā§āϰ āϏāĻ‚āĻ–ā§āϝāĻž
★āϏ⧁āώāĻŽ āĻŦāĻšā§āϭ⧁āϜ āĻāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇
āĻ…āĻ¨ā§āϤāσāϕ⧋āĻŖ + āĻŦāĻšāĻŋāσāϕ⧋āĻŖ=180°
āĻŦāĻžāĻšā§ āϏāĻ‚āĻ–ā§āϝāĻž=360°/āĻŦāĻšāĻŋāσ āϕ⧋āĻŖ
★āϚāϤ⧁āĻ°ā§āϭ⧁āĻœā§‡āϰ āĻĒāϰāĻŋāϏ⧀āĻŽāĻž=āϚāĻžāϰ āĻŦāĻžāĻšā§āϰ āϏāĻŽāĻˇā§āϟāĻŋ
_____________________________________________
đŸŽ¯āĻ¤ā§āϰāĻŋāϕ⧋āĻŖāĻŽāĻŋāϤāĻŋāϰ āϏ⧂āĻ¤ā§āϰāĻžāĻŦāϞ⧀āσ
1. sinθ=⤞āĻŽā§āĻŦ/āĻ…āϤāĻŋāĻ­ā§‚āϜ
2. cosθ=āĻ­ā§‚āĻŽāĻŋ/āĻ…āϤāĻŋāĻ­ā§‚āϜ
3. taneθ=⤞āĻŽā§āĻŦ/āĻ­ā§‚āĻŽāĻŋ
4. cotθ=āĻ­ā§‚āĻŽāĻŋ/āϞāĻŽā§āĻŦ
5. secθ=āĻ…āϤāĻŋāĻ­ā§‚āϜ/āĻ­ā§‚āĻŽāĻŋ
6. cosecθ=āĻ…āϤāĻŋāĻ­ā§‚āϜ/āϞāĻŽā§āĻŦ
7. sinθ=1/cosecθ, cosecθ=1/sinθ
8. cosθ=1/secθ, secθ=1/cosθ
9. tanθ=1/cotθ, cotθ=1/tanθ
10. sin²θ + cos²θ= 1
11. sin²θ = 1 - cos²θ
12. cos²θ = 1- sin²θ
13. sec²θ - tan²θ = 1
14. sec²θ = 1+ tan²θ
15. tan²θ = sec²θ - 1
16, cosec²θ - cot²θ = 1
17. cosec²θ = cot²θ + 1
18. cot²θ = cosec²θ - 1
_____________________________________________
đŸŽ¯ āĻŦāĻŋāϝāĻŧāĻžā§‡āϗ⧇āϰ āϏ⧂āĻ¤ā§āϰāĻžāĻŦāϞāĻŋ
1. āĻŦāĻŋāϝāĻŧāĻžā§‡āϜāύ-āĻŦāĻŋāϝāĻŧā§‹āĻœā§āϝ =āĻŦāĻŋāϝāĻŧā§‹āĻ—āĻĢāϞāĨ¤
2.āĻŦāĻŋāϝāĻŧāĻžā§‡āϜāύ=āĻŦāĻŋāϝāĻŧāĻžā§‡āĻ—āĻĢ + āĻŦāĻŋāϝāĻŧāĻžā§‡āĻœā§āϝ
3.āĻŦāĻŋāϝāĻŧāĻžā§‡āĻœā§āϝ=āĻŦāĻŋāϝāĻŧāĻžā§‡āϜāύ-āĻŦāĻŋāϝāĻŧāĻžā§‡āĻ—āĻĢāϞ
_____________________________________________
đŸŽ¯āϗ⧁āϪ⧇āϰ āϏ⧂āĻ¤ā§āϰāĻžāĻŦāϞāĻŋ
1.āϗ⧁āĻŖāĻĢāϞ =āϗ⧁āĻŖā§āϝ × āϗ⧁āĻŖāĻ•
2.āϗ⧁āĻŖāĻ• = āϗ⧁āĻŖāĻĢāϞ Ãˇ āϗ⧁āĻŖā§āϝ
3.āϗ⧁āĻŖā§āϝ= āϗ⧁āĻŖāĻĢāϞ Ãˇ āϗ⧁āĻŖāĻ•
_____________________________________________
đŸŽ¯āĻ­āĻžāϗ⧇āϰ āϏ⧂āĻ¤ā§āϰāĻžāĻŦāϞāĻŋ
āύāĻŋāσāĻļ⧇āώ⧇ āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āύāĻž āĻšāϞ⧇āĨ¤
1.āĻ­āĻžāĻœā§āϝ= āĻ­āĻžāϜāĻ• × āĻ­āĻžāĻ—āĻĢāϞ + āĻ­āĻžāĻ—āĻļ⧇āώāĨ¤
2.āĻ­āĻžāϜāĻ•= (āĻ­āĻžāĻœā§āĻ¯â€” āĻ­āĻžāĻ—āĻļ⧇āώ) Ãˇ āĻ­āĻžāĻ—āĻĢāϞāĨ¤
3.āĻ­āĻžāĻ—āĻĢāϞ = (āĻ­āĻžāĻœā§āϝ — āĻ­āĻžāĻ—āĻļ⧇āώ)Ãˇ āĻ­āĻžāϜāĻ•āĨ¤
*āύāĻŋāσāĻļ⧇āώ⧇ āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āĻšāϞ⧇āĨ¤
4.āĻ­āĻžāϜāĻ•= āĻ­āĻžāĻœā§āĻ¯Ãˇ āĻ­āĻžāĻ—āĻĢāϞāĨ¤
5.āĻ­āĻžāĻ—āĻĢāϞ = āĻ­āĻžāĻœā§āϝ Ãˇ āĻ­āĻžāϜāĻ•āĨ¤
6.āĻ­āĻžāĻœā§āϝ = āĻ­āĻžāϜāĻ• × āĻ­āĻžāĻ—āĻĢāϞāĨ¤
_____________________________________________
đŸŽ¯āĻ­āĻ—ā§āύāĻžāĻ‚āĻļ⧇āϰ āϞ.āϏāĻž.āϗ⧁ āĻ“ āĻ—.āϏāĻž.āϗ⧁ āϏ⧂āĻ¤ā§āϰāĻžāĻŦāϞ⧀
1.āĻ­āĻ—ā§āύāĻžāĻ‚āĻļ⧇āϰ āĻ—.āϏāĻž.āϗ⧁ = āϞāĻŦāϗ⧁āϞāĻžā§‡āϰ āĻ—.āϏāĻž.āϗ⧁ / āĻšāϰāϗ⧁āϞāĻžā§‡āϰ āϞ.āϏāĻž.āϗ⧁
2.āĻ­āĻ—ā§āύāĻžāĻ‚āĻļ⧇āϰ āϞ.āϏāĻž.āϗ⧁ =āϞāĻŦāϗ⧁āϞāĻžā§‡āϰ āϞ.āϏāĻž.āϗ⧁ /āĻšāϰāϗ⧁āϞāĻžāϰ āĻ—.āϏāĻž.āϗ⧁
3.āĻ­āĻ—ā§āύāĻžāĻ‚āĻļāĻĻā§āĻŦāϝāĻŧ⧇āϰ āϗ⧁āĻŖāĻĢāϞ = āĻ­āĻ—ā§āύāĻžāĻ‚āĻļāĻĻā§āĻŦāϝāĻŧ⧇āϰ āϞ.āϏāĻž.āϗ⧁ × āĻ­āĻ—ā§āύāĻžāĻ‚āĻļāĻĻā§āĻŦāϝāĻŧ⧇āϰ āĻ—.āϏāĻž.āϗ⧁.
_____________________________________________
đŸŽ¯āĻ—āĻĄāĻŧ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ
1.āĻ—āĻĄāĻŧ = āϰāĻžāĻļāĻŋ āϏāĻŽāĻˇā§āϟāĻŋ /āϰāĻžāĻļāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž
2.āϰāĻžāĻļāĻŋāϰ āϏāĻŽāĻˇā§āϟāĻŋ = āĻ—āĻĄāĻŧ ×āϰāĻžāĻļāĻŋāϰ āϏāĻ‚āĻ–ā§āϝāĻž
3.āϰāĻžāĻļāĻŋāϰ āϏāĻ‚āĻ–ā§āϝāĻž = āϰāĻžāĻļāĻŋāϰ āϏāĻŽāĻˇā§āϟāĻŋ Ãˇ āĻ—āĻĄāĻŧ
4.āφāϝāĻŧ⧇āϰ āĻ—āĻĄāĻŧ = āĻŽāĻžā§‡āϟ āφāϝāĻŧ⧇āϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖ / āĻŽāĻžā§‡āϟ āϞāĻžā§‡āϕ⧇āϰ āϏāĻ‚āĻ–ā§āϝāĻž
5.āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻ—āĻĄāĻŧ = āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞāĻžā§‡āϰ āϝāĻžā§‡āĻ—āĻĢāϞ /āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻĒāϰāĻŋāĻŽāĻžāύ āĻŦāĻž āϏāĻ‚āĻ–ā§āϝāĻž
6.āĻ•ā§āϰāĻŽāĻŋāĻ• āϧāĻžāϰāĻžāϰ āĻ—āĻĄāĻŧ =āĻļ⧇āώ āĻĒāĻĻ +ā§§āĻŽ āĻĒāĻĻ /2
_____________________________________________
đŸŽ¯āϏ⧁āĻĻāĻ•āώāĻžāϰ āĻĒāϰāĻŋāĻŽāĻžāύ āύāĻŋāĻ°ā§āύāϝāĻŧ⧇āϰ āϏ⧂āĻ¤ā§āϰāĻžāĻŦāϞ⧀
1. āϏ⧁āĻĻ = (āϏ⧁āĻĻ⧇āϰ āĻšāĻžāĻ°Ã—āφāϏāĻ˛Ã—āϏāĻŽāϝāĻŧ) Ãˇā§§ā§Ļā§Ļ
2. āϏāĻŽāϝāĻŧ = (100× āϏ⧁āĻĻ)Ãˇ (āφāϏāĻ˛Ã—āϏ⧁āĻĻ⧇āϰ āĻšāĻžāϰ)
3. āϏ⧁āĻĻ⧇āϰ āĻšāĻžāϰ = (100×āϏ⧁āĻĻ)Ãˇ(āφāϏāĻ˛Ã—āϏāĻŽāϝāĻŧ)
4. āφāϏāϞ = (100×āϏ⧁āĻĻ)Ãˇ(āϏāĻŽāϝāĻŧ×āϏ⧁āĻĻ⧇āϰ āĻšāĻžāϰ)
5. āφāϏāϞ = {100×(āϏ⧁āĻĻ-āĻŽā§‚āϞ)}Ãˇ(100+āϏ⧁āĻĻ⧇āϰ āĻšāĻžāĻ°Ã—āϏāĻŽāϝāĻŧ )
6. āϏ⧁āĻĻāĻžāϏāϞ = āφāϏāϞ + āϏ⧁āĻĻ
7. āϏ⧁āĻĻāĻžāϏāϞ = āφāϏāϞ ×(1+ āϏ⧁āĻĻ⧇āϰ āĻšāĻžāϰ)× āϏāĻŽāϝāĻŧ |[āϚāĻ•ā§āϰāĻŦ⧃āĻĻā§āϧāĻŋ āϏ⧁āĻĻ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇]āĨ¤
_____________________________________________
â­•đŸ—Ŗī¸āϞāĻžāĻ­-āĻ•ā§āώāϤāĻŋāϰ āĻāĻŦāĻ‚ āĻ•ā§āϰāϝāĻŧ-āĻŦāĻŋāĻ•ā§āϰāϝāĻŧ⧇āϰ āϏ⧂āĻ¤ā§āϰāĻžāĻŦāĻ˛ā§€đŸšŠ
1. āϞāĻžāĻ­ = āĻŦāĻŋāĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ-āĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ
2.āĻ•ā§āώāϤāĻŋ = āĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ-āĻŦāĻŋāĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ
3.āĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ = āĻŦāĻŋāĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ-āϞāĻžāĻ­
āĻ…āĻĨāĻŦāĻž
āĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ = āĻŦāĻŋāĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ + āĻ•ā§āώāϤāĻŋ
4.āĻŦāĻŋāĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ = āĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ + āϞāĻžāĻ­
āĻ…āĻĨāĻŦāĻž
āĻŦāĻŋāĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ = āĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ-āĻ•ā§āώāϤāĻŋ
_____________________________________________
â­•đŸ—Ŗī¸1-100 āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāĻŽāύ⧇ āϰāĻžāĻ–āĻžāϰ āϏāĻšāϜ āωāĻĒāĻžāϝāĻŧāĻƒđŸšŠ
āĻļāĻ°ā§āϟāĻ•āĻžāϟ :- 44 -22 -322-321
★1āĻĨ⧇āϕ⧇100āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=25āϟāĻŋ
★1āĻĨ⧇āϕ⧇10āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=4āϟāĻŋ 2,3,5,7
★11āĻĨ⧇āϕ⧇20āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=4āϟāĻŋ 11,13,17,19
★21āĻĨ⧇āϕ⧇30āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=2āϟāĻŋ 23,29
★31āĻĨ⧇āϕ⧇40āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=2āϟāĻŋ 31,37
★41āĻĨ⧇āϕ⧇50āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=3āϟāĻŋ 41,43,47
★51āĻĨ⧇āϕ⧇ 60āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=2āϟāĻŋ 53,59
★61āĻĨ⧇āϕ⧇70āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=2āϟāĻŋ 61,67
★71āĻĨ⧇āϕ⧇80 āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=3āϟāĻŋ 71,73,79
★81āĻĨ⧇āϕ⧇ 90āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=2āϟāĻŋ 83,89
★91āĻĨ⧇āϕ⧇100āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=1āϟāĻŋ 97
🚩1-100 āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž 25 āϟāĻŋāσ
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
🚩1-100āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϝ⧋āĻ—āĻĢāϞ
1060āĨ¤
_____________________________________________
🚩1.āϕ⧋āύ āĻ•āĻŋāϛ⧁āϰ
āĻ—āϤāĻŋāĻŦ⧇āĻ—= āĻ…āϤāĻŋāĻ•ā§āϰāĻžāĻ¨ā§āϤ āĻĻā§‚āϰāĻ¤ā§āĻŦ/āϏāĻŽāϝāĻŧ
2.āĻ…āϤāĻŋāĻ•ā§āϰāĻžāĻ¨ā§āϤ āĻĻā§‚āϰāĻ¤ā§āĻŦ = āĻ—āϤāĻŋāĻŦ⧇āĻ—Ã—āϏāĻŽāϝāĻŧ
3.āϏāĻŽāϝāĻŧ= āĻŽā§‹āϟ āĻĻā§‚āϰāĻ¤ā§āĻŦ/āĻŦ⧇āĻ—
4.āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻ…āύ⧁āϕ⧂āϞ⧇ āύ⧌āĻ•āĻžāϰ āĻ•āĻžāĻ°ā§āϝāĻ•āϰ⧀ āĻ—āϤāĻŋāĻŦ⧇āĻ— = āύ⧌āĻ•āĻžāϰ āĻĒā§āϰāĻ•ā§ƒāϤ āĻ—āϤāĻŋāĻŦ⧇āĻ— + āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻ—āϤāĻŋāĻŦ⧇āĻ—āĨ¤
5.āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻĒā§āϰāϤāĻŋāϕ⧂āϞ⧇ āύ⧌āĻ•āĻžāϰ āĻ•āĻžāĻ°ā§āϝāĻ•āϰ⧀ āĻ—āϤāĻŋāĻŦ⧇āĻ— = āύ⧌āĻ•āĻžāϰ āĻĒā§āϰāĻ•ā§ƒāϤ āĻ—āϤāĻŋāĻŦ⧇āĻ— - āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻ—āϤāĻŋāĻŦ⧇āĻ—
_____________________________________________
đŸ—Ŗī¸āϏāϰāϞ āϏ⧁āĻĻ🚩
āϝāĻĻāĻŋ āφāϏāϞ=P, āϏāĻŽāϝāĻŧ=T, āϏ⧁āĻĻ⧇āϰ āĻšāĻžāϰ=R, āϏ⧁āĻĻ-āφāϏāϞ=A āĻšāϝāĻŧ, āϤāĻžāĻšāϞ⧇
1.āϏ⧁āĻĻ⧇āϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖ= PRT/100
2.āφāϏāϞ= 100×āϏ⧁āĻĻ-āφāϏāϞ(A)/100+TR
_____________________________________________
⭕🚩āύ⧌āĻ•āĻžāϰ āĻ—āϤāĻŋ āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻ…āύ⧁āϕ⧂āϞ⧇ āϘāĻ¨ā§āϟāĻžāϝāĻŧ 10 āĻ•āĻŋ.āĻŽāĻŋ. āĻāĻŦāĻ‚ āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻĒā§āϰāϤāĻŋāϕ⧂āϞ⧇ 2 āĻ•āĻŋ.āĻŽāĻŋ.āĨ¤ āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻŦ⧇āĻ— āĻ•āϤ?
★āĻŸā§‡āĻ•āύāĻŋāĻ•-
āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻŦ⧇āĻ— = (āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻ…āύ⧁āϕ⧂āϞ⧇ āύ⧌āĻ•āĻžāϰ āĻŦ⧇āĻ— - āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻĒā§āϰāϤāĻŋāϕ⧂āϞ⧇ āύ⧌āĻ•āĻžāϰ āĻŦ⧇āĻ—) /2
= (10 - 2)/2=
= 4 āĻ•āĻŋ.āĻŽāĻŋ.
🚩āĻāĻ•āϟāĻŋ āύ⧌āĻ•āĻž āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻ…āύ⧁āϕ⧂āϞ⧇ āϘāĻ¨ā§āϟāĻžāϝāĻŧ 8 āĻ•āĻŋ.āĻŽāĻŋ.āĻāĻŦāĻ‚ āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻĒā§āϰāϤāĻŋāϕ⧂āϞ⧇ āϘāĻ¨ā§āϟāĻžāϝāĻŧ 4 āĻ•āĻŋ.āĻŽāĻŋ.
āϝāĻžāϝāĻŧāĨ¤ āύ⧌āĻ•āĻžāϰ āĻŦ⧇āĻ— āĻ•āϤ?
★ āĻŸā§‡āĻ•āύāĻŋāĻ•-
āύ⧌āĻ•āĻžāϰ āĻŦ⧇āĻ— = (āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻ…āύ⧁āϕ⧂āϞ⧇ āύ⧌āĻ•āĻžāϰ āĻŦ⧇āĻ—+āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻĒā§āϰāϤāĻŋāϕ⧂āϞ⧇ āύ⧌āĻ•āĻžāϰ āĻŦ⧇āĻ—)/2
= (8 + 4)/2
=6 āĻ•āĻŋ.āĻŽāĻŋ.
🚩āύ⧌āĻ•āĻž āĻ“ āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻŦ⧇āĻ— āϘāĻ¨ā§āϟāĻžāϝāĻŧ āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ 10 āĻ•āĻŋ.āĻŽāĻŋ. āĻ“ 5 āĻ•āĻŋ.āĻŽāĻŋ.āĨ¤ āύāĻĻā§€āĻĒāĻĨ⧇ 45 āĻ•āĻŋ.āĻŽāĻŋ. āĻĒāĻĨ āĻāĻ•āĻŦāĻžāϰ āĻ—āĻŋāϝāĻŧ⧇ āĻĢāĻŋāϰ⧇ āφāϏāϤ⧇ āĻ•āϤ āϏāĻŽāϝāĻŧ āϞāĻžāĻ—āĻŦ⧇?
āĻŸā§‡āĻ•āύāĻŋāĻ•-
★āĻŽāĻžā§‡āϟ āϏāĻŽāϝāĻŧ = [(āĻŽāĻžā§‡āϟ āĻĻā§‚āϰāĻ¤ā§āĻŦ/ āĻ…āύ⧁āϕ⧂āϞ⧇ āĻŦ⧇āĻ—) + (āĻŽāĻžā§‡āϟ āĻĻā§‚āϰāĻ¤ā§āĻŦ/āĻĒā§āϰāϤāĻŋāϕ⧂āϞ⧇ āĻŦ⧇āĻ—)]
āωāĻ¤ā§āϤāϰ:āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻ…āύ⧁āϕ⧂āϞ⧇ āύ⧌āĻ•āĻžāϰāĻŦ⧇āĻ— = (10+5) = 15 āĻ•āĻŋ.āĻŽāĻŋ.
āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻĒā§āϰāϤāĻŋāϕ⧂āϞ⧇ āύ⧌āĻ•āĻžāϰ āĻŦ⧇āĻ— = (10-5) = 5āĻ•āĻŋ.āĻŽāĻŋ.
[(45/15) +(45/5)]
= 3+9
=12 āϘāĻ¨ā§āϟāĻž
_____________________________________________
🚩★āϏāĻŽāĻžāĻ¨ā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϝ⧋āĻ—āĻĢāϞ-
(āϝāĻ–āύ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ1 āĻĨ⧇āϕ⧇ āĻļ⧁āϰ⧁)1+2+3+4+......+n āĻšāϞ⧇ āĻāϰ⧂āĻĒ āϧāĻžāϰāĻžāϰ āϏāĻŽāĻˇā§āϟāĻŋ= [n(n+1)/2]
n=āĻļ⧇āώ āϏāĻ‚āĻ–ā§āϝāĻž āĻŦāĻž āĻĒāĻĻ āϏāĻ‚āĻ–ā§āϝāĻž s=āϝ⧋āĻ—āĻĢāϞ
🚩 āĻĒā§āϰāĻļā§āύāσ 1+2+3+....+100 =?
👍 āϏāĻŽāĻžāϧāĻžāύāσ[n(n+1)/2]
= [100(100+1)/2]
= 5050
🚩★āϏāĻŽāĻžāĻ¨ā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻŦāĻ°ā§āĻ— āϝ⧋āĻ— āĻĒāĻĻā§āϧāϤāĻŋāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇,-
āĻĒā§āϰāĻĨāĻŽ n āĻĒāĻĻ⧇āϰ āĻŦāĻ°ā§āϗ⧇āϰ āϏāĻŽāĻˇā§āϟāĻŋ
S= [n(n+1)2n+1)/6]
(āϝāĻ–āύ 1² + 2²+ 3² + 4²........ +n²)
🚩āĻĒā§āϰāĻļā§āύāσ(1² + 3²+ 5² + ....... +31²) āϏāĻŽāĻžāύ āĻ•āϤ?
👍āϏāĻŽāĻžāϧāĻžāύāσ S=[n(n+1)2n+1)/6]
= [31(31+1)2×31+1)/6]
=31
🚩★āϏāĻŽāĻžāĻ¨ā§āϤāϰ āϧāĻžāϰāĻžāϰ āϘāύāϝ⧋āĻ— āĻĒāĻĻā§āϧāϤāĻŋāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇-
āĻĒā§āϰāĻĨāĻŽ n āĻĒāĻĻ⧇āϰ āϘāύ⧇āϰ āϏāĻŽāĻˇā§āϟāĻŋ S= [n(n+1)/2]2
(āϝāĻ–āύ 1Âŗ+2Âŗ+3Âŗ+.............+nÂŗ)
🚩āĻĒā§āϰāĻļā§āύāσ1Âŗ+2Âŗ+3Âŗ+4Âŗ+â€Ļâ€Ļâ€Ļâ€Ļ+10Âŗ=?
👍āϏāĻŽāĻžāϧāĻžāύāσ [n(n+1)/2]2
= [10(10+1)/2]2
= 3025
_____________________________________________
🚩★āĻĒāĻĻ āϏāĻ‚āĻ–ā§āϝāĻž āĻ“ āĻĒāĻĻ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϏāĻŽāĻˇā§āϟāĻŋ āύāĻŋāĻ°ā§āύāϝāĻŧ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āσ
āĻĒāĻĻ āϏāĻ‚āĻ–ā§āϝāĻž N= [(āĻļ⧇āώ āĻĒāĻĻ â€“ āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ)/āĻĒā§āϰāϤāĻŋ āĻĒāĻĻ⧇ āĻŦ⧃āĻĻā§āϧāĻŋ] +1
🚩āĻĒā§āϰāĻļā§āύāσ5+10+15+â€Ļâ€Ļâ€Ļâ€Ļ+50=?
👍āϏāĻŽāĻžāϧāĻžāύāσ āĻĒāĻĻāϏāĻ‚āĻ–ā§āϝāĻž = [(āĻļ⧇āώ āĻĒāĻĻ â€“ āĻĒā§āϰāĻĨāĻŽāĻĒāĻĻ)/āĻĒā§āϰāϤāĻŋ āĻĒāĻĻ⧇ āĻŦ⧃āĻĻā§āϧāĻŋ]+1
= [(50 – 5)/5] + 1
=10
āϏ⧁āϤāϰāĻžāĻ‚ āĻĒāĻĻ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϏāĻŽāĻˇā§āϟāĻŋ
= [(5 + 50)/2] ×10
= 275
🚩★ n āϤāĻŽ āĻĒāĻĻ=a + (n-1)d
āĻāĻ–āĻžāύ⧇, n =āĻĒāĻĻāϏāĻ‚āĻ–ā§āϝāĻž, a = 1āĻŽ āĻĒāĻĻ, d= āϏāĻžāϧāĻžāϰāĻŖ āĻ…āĻ¨ā§āϤāϰ
🚩āĻĒā§āϰāĻļā§āύāσ 5+8+11+14+.......āϧāĻžāϰāĻžāϟāĻŋāϰ āϕ⧋āύ āĻĒāĻĻ 302?
👍 āϏāĻŽāĻžāϧāĻžāύāσ āϧāϰāĻŋ, n āϤāĻŽ āĻĒāĻĻ =302
āĻŦāĻž, a + (n-1)d=302
āĻŦāĻž, 5+(n-1)3 =302
āĻŦāĻž, 3n=300
āĻŦāĻž, n=100
🚩āϏāĻŽāĻžāĻ¨ā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻ•ā§āϰāĻŽāĻŋāĻ• āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϝ⧋āĻ—āĻĢāϞ-S=M² āĻāĻ–āĻžāύ⧇,M=āĻŽāĻ§ā§āϝ⧇āĻŽāĻž=(1āĻŽ āϏāĻ‚āĻ–ā§āϝāĻž+āĻļ⧇āώ āϏāĻ‚āĻ–ā§āϝāĻž)/2
🚩āĻĒā§āϰāĻļā§āύāσ1+3+5+.......+19=āĻ•āϤ?
👍 āϏāĻŽāĻžāϧāĻžāύāσ S=M²
={(1+19)/2}²
=(20/2)²
=100
_____________________________________________
⭕🚩 āĻŦāĻ°ā§āĻ—đŸ‘
(1)²=1,(11)²=121,(111)²=12321,(1111)²=1234321,(11111)²=123454321
🚩👍āύāĻŋāϝāĻŧāĻŽ-āϝāϤāϗ⧁āϞ⧋ 1 āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āύāĻŋāϝāĻŧ⧇ āĻŦāĻ°ā§āĻ— āĻ•āϰāĻž āĻšāĻŦ⧇, āĻŦāĻ°ā§āĻ— āĻĢāϞ⧇ 1 āĻĨ⧇āϕ⧇ āĻļ⧁āϰ⧁ āĻ•āϰ⧇ āĻĒāϰ āĻĒāϰ āϏ⧇āχ āϏāĻ‚āĻ–ā§āϝāĻž āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āϞāĻŋāĻ–āϤ⧇ āĻšāĻŦ⧇ āĻāĻŦāĻ‚ āϤāĻžāϰāĻĒāϰ āϏ⧇āχ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻĒāϰ āĻĨ⧇āϕ⧇ āĻ…āϧāσāĻ•ā§āϰāĻŽā§‡ āĻĒāϰāĻĒāϰ āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞ⧋ āϞāĻŋāϖ⧇ 1 āϏāĻ‚āĻ–ā§āϝāĻžāϝāĻŧ āĻļ⧇āώ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤
🚩(3)²=9,(33)²=1089,(333)²=110889,(3333)²=11108889,(33333)²=1111088889
👍āϝāϤāϗ⧁āϞāĻŋ 3 āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āύāĻŋāϝāĻŧ⧇ āĻŦāĻ°ā§āĻ— āĻ•āϰāĻž āĻšāĻŦ⧇, āĻŦāĻ°ā§āĻ— āĻĢāϞ⧇ āĻāĻ•āϕ⧇āϰ āϘāϰ⧇ 9 āĻāĻŦāĻ‚ 9 āĻāϰ āĻŦāĻžāρāĻĻāĻŋāϕ⧇ āϤāĻžāϰ āĻšā§‡āϝāĻŧ⧇ (āϝāϤāϗ⧁āϞ⧋ 3 āĻĨāĻžāĻ•āĻŦ⧇) āĻāĻ•āϟāĻŋ āĻ•āĻŽ āϏāĻ‚āĻ–ā§āϝāĻ• 8, āϤāĻžāϰ āĻĒāϰ āĻŦāĻžāρāĻĻāĻŋāϕ⧇ āĻāĻ•āϟāĻŋ 0 āĻāĻŦāĻ‚ āĻŦāĻžāρāĻĻāĻŋāϕ⧇ 8 āĻāϰ āϏāĻŽāϏāĻ‚āĻ–ā§āϝāĻ• 1 āĻŦāϏāĻŦ⧇āĨ¤
🚩(6)²=36,(66)²=4356,(666)²=443556,(6666)²=44435556,(66666)²=4444355556
👍āϝāϤāϗ⧁āϞāĻŋ 6 āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āύāĻŋāϝāĻŧ⧇ āĻŦāĻ°ā§āĻ— āĻ•āϰāĻž āĻšāĻŦ⧇, āĻŦāĻ°ā§āĻ— āĻĢāϞ⧇ āĻāĻ•āϕ⧇āϰ āϘāϰ⧇ 6 āĻāĻŦāĻ‚ 6 āĻāϰ āĻŦāĻžāρāĻĻāĻŋāϕ⧇ āϤāĻžāϰ āĻšā§‡āϝāĻŧ⧇ (āϝāϤāϗ⧁āϞ⧋ 6 āĻĨāĻžāĻ•āĻŦ⧇) āĻāĻ•āϟāĻŋ āĻ•āĻŽ āϏāĻ‚āĻ–ā§āϝāĻ• 5, āϤāĻžāϰ āĻĒāϰ āĻŦāĻžāρāĻĻāĻŋāϕ⧇ āĻāĻ•āϟāĻŋ 3 āĻāĻŦāĻ‚ āĻŦāĻžāρāĻĻāĻŋāϕ⧇ 5 āĻāϰ āϏāĻŽāϏāĻ‚āĻ–ā§āϝāĻ• 4 āĻŦāϏāĻŦ⧇āĨ¤
🚩(9)²=81,(99)²=9801,(999)²=998001,(9999)²=99980001,(99999)²=9999800001
👍āϝāϤāϗ⧁āϞāĻŋ 9 āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āύāĻŋāϝāĻŧ⧇ āĻŦāĻ°ā§āĻ— āĻ•āϰāĻž āĻšāĻŦ⧇, āĻŦāĻ°ā§āĻ— āĻĢāϞ⧇ āĻāĻ•āϕ⧇āϰ āϘāϰ⧇ 1 āĻāĻŦāĻ‚ 1 āĻāϰ āĻŦāĻžāρāĻĻāĻŋāϕ⧇ āϤāĻžāϰ āĻšā§‡āϝāĻŧ⧇ (āϝāϤāϗ⧁āϞ⧋ 9 āĻĨāĻžāĻ•āĻŦ⧇) āĻāĻ•āϟāĻŋ āĻ•āĻŽ āϏāĻ‚āĻ–ā§āϝāĻ• 0, āϤāĻžāϰ āĻĒāϰ āĻŦāĻžāρāĻĻāĻŋāϕ⧇ āĻāĻ•āϟāĻŋ 8 āĻāĻŦāĻ‚ āĻŦāĻžāρāĻĻāĻŋāϕ⧇ 0 āĻāϰ āϏāĻŽāϏāĻ‚āĻ–ā§āϝāĻ• 9 āĻŦāϏāĻŦ⧇āĨ¤
_____________________________________________
â­•đŸ—Ŗī¸đŸ‘‰āϜāύāĻ•â‰ Father
1)Numerology (āϏāĻ‚āĻ–ā§āϝāĻžāϤāĻ¤ā§āĻ¤ā§āĻŦ)- Pythagoras(āĻĒāĻŋāĻĨāĻžāĻ—ā§‹āϰāĻžāϏ)
2) Geometry(āĻœā§āϝāĻžāĻŽāĻŋāϤāĻŋ)- Euclid(āχāωāĻ•ā§āϞāĻŋāĻĄ)
3) Calculus(āĻ•ā§āϝāĻžāϞāϕ⧁āϞāĻžāϏ)- Newton(āύāĻŋāωāϟāύ)
4) Matrix(āĻŽā§āϝāĻžāĻŸā§āϰāĻŋāĻ•ā§āϏ) - Arthur Cayley(āĻ…āĻ°ā§āĻĨāĻžāϰ āĻ•ā§āϝāĻžāϞ⧇)
5)Trigonometry(āĻ¤ā§āϰāĻŋāϕ⧋āĻŖāĻŽāĻŋāϤāĻŋ)Hipparchus(āĻšāĻŋāĻĒā§āĻĒāĻžāϰāϚāĻžāϏ)
6) Asthmatic(āĻĒāĻžāϟāĻŋāĻ—āĻŖāĻŋāϤ) Brahmagupta(āĻŦā§āϰāĻšā§āĻŽāϗ⧁āĻĒā§āϤ)
7) Algebra(āĻŦā§€āϜāĻ—āĻŖāĻŋāϤ)- Muhammad ibn Musa al-Khwarizmi(āĻŽāĻžā§‡āĻšāĻžāĻŽā§āĻŽāĻĻ āĻŽā§āϏāĻž āφāϞ āĻ–āĻžāϰāĻŋāϜāĻŽā§€)
😎 Logarithm(āϞāĻ—āĻžāϰāĻŋāĻĻāĻŽ)- John Napier(āϜāύ āύ⧇āĻĒāĻŋāϝāĻŧāĻžāϰ)
9) Set theory(āϏ⧇āϟ āϤāĻ¤ā§āĻ¤ā§āĻŦ)- George Cantor(āϜāĻ°ā§āϜ āĻ•ā§āϝāĻžāĻ¨ā§āϟāϰ)
10) Zero(āĻļā§‚āĻ¨ā§āϝ)- Brahmagupta(āĻŦā§āϰāĻšā§āĻŽāϗ⧁āĻĒā§āϤ)
_____________________________________________
🌟⭕👉āĻ…āĻ™ā§āϕ⧇āϰ āχāĻ‚āϰ⧇āϜāĻŋ āĻļāĻŦā§āĻĻ
āĻĒāĻžāϟāĻŋāĻ—āĻŖāĻŋāϤ āĻ“ āĻĒāϰāĻŋāĻŽāĻŋāϤāĻŋ
āĻ…āĻ™ā§āĻ•-Digit, āĻ…āύ⧁āĻĒāĻžāϤ-Ratio, āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžâ€”Prime number, āĻĒā§‚āĻ°ā§āĻŖāĻŦāĻ°ā§āĻ—-Perfect square,āĻ‰ā§ŽāĻĒāĻžāĻĻāĻ•-Factor,āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻŽāĻžāύ⧁āĻĒāĻžāĻ¤ā§€â€”Continued proportion, āĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ -Cost price, āĻ•ā§āώāϤāĻŋ-Loss, āĻ—āĻĄāĻŧ-Average, āĻ—āϤāĻŋāĻŦ⧇āĻ—-Velocity, āϗ⧁āĻŖāĻĢāϞ-Product, āĻ—,āϏāĻž,āϗ⧁-Highest Common Factor, āϘāĻžāϤ-Power, āϘāύāĻŽā§‚āĻ˛â€”Cube root, āϘāύāĻ•-Cube, āϘāύāĻĢāϞ-Volume, āĻĒā§‚āĻ°ā§āύāϏāĻ‚āĻ–ā§āϝāĻž-Integer, āϚāĻžāĻĒ-Arc, āĻšā§‹āĻ™-Cylinder, āĻœā§āϝāĻž-Chord, āĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž-Even number, āĻ§ā§āϰ⧁āĻŦāĻ•-Constant, āĻĒāϰāĻŋāϏ⧀āĻŽāĻž-Perimeter, āĻŦāĻžāĻ¸ā§āϤāĻŦ-Real, āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ-Square root, āĻŦā§āϝāĻ¸ā§āϤ āĻ…āύ⧁āĻĒāĻžāĻ¤â€”Inverse ratio, āĻŦāĻŋāĻœā§‹āĻĄāĻŧāϏāĻ‚āĻ–ā§āϝāĻžâ€”Odd number, āĻŦāĻŋāĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ -Selling price, āĻŦā§€āϜāĻ—āĻŖāĻŋāĻ¤â€”Algebra, āĻŽā§‚āϞāĻĻ Rational, āĻŽāĻ§ā§āϝ āϏāĻŽāĻžāύ⧁āĻĒāĻžāϤ⧀ -Mean proportional, āϝāĻžā§‡āĻ—āĻĢāϞ=Sum
āϞ,āϏāĻž,āϗ⧁-Lowest Common Multiple, āϞāĻŦ-Numerator, āĻļāϤāĻ•āϰāĻž-Percentage, āϏāĻŽāĻžāύ⧁āĻĒāĻžāϤ-Proportion, āϏāĻŽāĻžāύ⧁āĻĒāĻžāϤ⧀-Proportional, āϏ⧁āĻĻ-Interest, āĻšāϰ-Denominator,
_____________________________________________
â¤ī¸āĻœā§āϝāĻžāĻŽāĻŋāϤāĻŋ
āĻ…āϤāĻŋāĻ­ā§‚āĻœâ€”Hypotenuse, āĻ…āĻ¨ā§āϤāσāϕ⧋āĻŖ-Internal angle, āĻ…āĻ°ā§āϧāĻŦ⧃āĻ¤ā§āϤ-Semi-circle, āĻ…āĻ¨ā§āϤ āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ-In-radius, āφāϝāĻŧāϤāĻ•ā§āώ⧇āĻ¤ā§āϰ-Rectangle, āωāĻšā§āϚāϤāĻž-Height, āĻ•āĻ°ā§āĻŖâ€“Diagonal, āϕ⧋āĻŖ-Angle, āϕ⧇āĻ¨ā§āĻĻā§āϰ-Centre, āĻ—āĻžā§‡āϞāĻ•-Sphere, āϚāϤ⧁āĻ°ā§āϭ⧁āϜ-Quadrilateral, āĻšā§‹āĻ™-Cylinder,āĻœā§āϝāĻžāĻŽāĻŋāϤāĻŋ-Geometry,āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ-Length, āĻĒāĻžā§āϚāĻ­ā§‚āϜ -Pentagon, āĻĒā§āϰāĻ¸ā§āĻĨ-Breadth
āĻĒā§‚āϰāĻ•āϕ⧋āύ-Complementary angles, āĻŦāĻžāĻšā§-Side, āĻŦ⧃āĻ¤ā§āϤ-Circle, āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ-Radius, āĻŦā§āϝāĻžāϏ-Diameter, āĻŦāĻšā§āĻ­ā§‚āϜ-Polygon, āĻŦāĻ°ā§āĻ—āĻ•ā§āώ⧇āĻ¤ā§āĻ°â€”Square, āĻŦāĻšāĻŋ:āĻ¸ā§āĻĨ External, āĻļāĻ™ā§āϕ⧁-Cone, āϏāĻŽāϕ⧋āĻŖ-Right angle, āϏāĻŽāĻŦāĻžāĻšā§ āĻ¤ā§āϰāĻŋāĻ­ā§‚āϜ-Equilateral triangle, āĻ…āϏāĻŽāĻŦāĻžāĻšā§ āĻ¤ā§āϰāĻŋāĻ­ā§‚āĻœâ€”Scalene triangle, āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āĻ¤ā§āϰāĻŋāĻ­ā§‚āϜ-isosceles Triangle,āϏāĻŽāϕ⧋āĻŖā§€ āĻ¤ā§āϰāĻŋāϭ⧁āϜ Right angled triangle, āϏ⧂āĻ•ā§āĻˇā§āĻŽāϕ⧋āĻŖā§€-Acute angled triangle, āĻ¸ā§āĻĨā§‚āϞāϕ⧋āĻŖā§€ āĻ¤ā§āϰāĻŋāϭ⧁āϜ Obtuse angled triangle, āϏāĻŽāĻžāĻ¨ā§āϤāϰāĻžāĻ˛â€”Parallel, āϏāϰāϞāϰ⧇āĻ–āĻžâ€”Straight line, āϏāĻŽā§āĻĒā§‚āϰāĻ• āϕ⧋āĻŖâ€”Supplementary angles, āϏāĻĻ⧃āĻļāϕ⧋āĻŖā§€-Equiangular
_____________________________________________
🚩āϰ⧋āĻŽāĻžāύ āϏāĻ‚āĻ–ā§āϝāĻžâ‰  Roman numerals )
1:I
2: II
3: III
4: IV
5: V
6: VI
7: VII
8: VIII
9: IX
10: X
11: XI
12: XII
13: XIII
14: XIV
15: XV
16: XVI
17: XVII
18: XVIII
19: XIX
20: XX
30: ###
40: XL
50: L
60: LX
70: LXX
80: L###
90: XC
100: C
200: CC
300: CCC
400: CD
500: D
600: DC
700: DCC
800: DCCC
900: CM
1000:M
_____________________________________________
â­•đŸ—Ŗī¸1. āĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž + āĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž = āĻœā§‹āĻĄāĻŧ
āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤
āϝ⧇āĻŽāύāσ 2 + 6 = 8.
đŸ—Ŗī¸2. āĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž + āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž =
āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤
āϝ⧇āĻŽāύāσ 6 + 7 = 13.
đŸ—Ŗī¸3. āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž + āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž =
āĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤
āϝ⧇āĻŽāύāσ 3 + 5 = 8.
đŸ—Ŗī¸4. āĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž × āĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž = āĻœā§‹āĻĄāĻŧ
āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤
āϝ⧇āĻŽāύāσ 6 × 8 = 48.
đŸ—Ŗī¸5.āĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž × āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž = āĻœā§‹āĻĄāĻŧ
āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤
āϝ⧇āĻŽāύāσ 6 × 7 = 42
đŸ—Ŗī¸6.āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž × āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž =
āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤
āϝ⧇āĻŽāύāσ 3 × 9 = 27
_____________________________________________
⭕👉āĻ•ā§āϝāĻžāϞāϕ⧁āϞ⧇āϟāϰ āĻ›āĻžāĻĄāĻŧāĻž āϝ⧇ āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻžāϰ āĻāĻ•āϟāĻŋ effective āĻŸā§‡āĻ•āύāĻŋāĻ•!
🌟 āĻ•ā§āϝāĻžāϞāϕ⧁āϞ⧇āϟāϰ āĻ›āĻžāĻĄāĻŧāĻž āϝ⧇ āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ 5 āĻĻāĻŋāϝāĻŧ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻžāϰ āĻāĻ•āϟāĻŋ effective āĻŸā§‡āĻ•āύāĻŋāĻ•
1.🚩 13/5= 2.6 (āĻ•ā§āϝāĻžāϞāϕ⧁āϞ⧇āϟāϰ āĻ›āĻžāĻĄāĻŧāĻž āĻŽāĻžāĻ¤ā§āϰ ā§Š āϏ⧇āϕ⧇āĻ¨ā§āĻĄā§‡ āĻāϟāĻŋ āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰāĻž āϝāĻžāϝāĻŧ)
⭕★āĻŸā§‡āĻ•āύāĻŋāĻ•āσ
5 āĻĻāĻŋāϝāĻŧ⧇ āϝ⧇ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻŦ⧇āύ āϤāĻžāϕ⧇ 2 āĻĻāĻŋāϝāĻŧ⧇ āϗ⧁āĻŖ āĻ•āϰ⧁āύ āϤāĻžāϰāĻĒāϰ āĻĄāĻžāύāĻĻāĻŋāĻ• āĻĨ⧇āϕ⧇ 1 āϘāϰ āφāϗ⧇ āĻĻāĻļāĻŽāĻŋāĻ• āĻŦāϏāĻŋāϝāĻŧ⧇ āĻĻāĻŋāύāĨ¤ āĻ•āĻžāϜ āĻļ⧇āώ!!! 13*2=26, āϤāĻžāϰāĻĒāϰ āĻĨ⧇āϕ⧇ 1 āϘāϰ āφāϗ⧇ āĻĻāĻļāĻŽāĻŋāĻ• āĻŦāϏāĻŋāϝāĻŧ⧇ āĻĻāĻŋāϞ⧇ 2.6 āĨ¤
2.🚩 213/5=42.6 (213*2=426)
0.03/5= 0.006 (0.03*2=0.06 āϝāĻžāϰ āĻāĻ•āϘāϰ āφāϗ⧇ āĻĻāĻļāĻŽāĻŋāĻ• āĻŦāϏāĻžāϞ⧇ āĻšāϝāĻŧ 0.006) 333,333,333/5= 66,666,666.6 (āĻāχ āϗ⧁āϞāĻž āĻ•āϰāϤ⧇ āφāĻŦāĻžāϰ āĻ•ā§āϝāĻžāϞāϕ⧁āϞ⧇āϟāϰ āϞāĻžāϗ⧇ āύāĻž āĻ•āĻŋ!)
3.🚩 12,121,212/5= 2,424,242.4
āĻāĻŦāĻžāϰ āύāĻŋāĻœā§‡ āχāĻšā§āϛ⧇āĻŽāϤ 5 āĻĻāĻŋāϝāĻŧ⧇ āϝ⧇ āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āĻ­āĻžāĻ— āĻ•āϰ⧇ āĻĻ⧇āϖ⧁āύ
🌟👉 āĻ•ā§āϝāĻžāϞāϕ⧁āϞ⧇āϟāϰ āĻ›āĻžāĻĄāĻŧāĻž āϝ⧇ āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ 25 āĻĻāĻŋāϝāĻŧ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻžāϰ āĻāĻ•āϟāĻŋ effective āĻŸā§‡āĻ•āύāĻŋāĻ•
1.🚩 13/25=0.52 (āĻ•ā§āϝāĻžāϞāϕ⧁āϞ⧇āϟāϰ āĻ›āĻžāĻĄāĻŧāĻž āĻāϟāĻŋāĻ“ āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰāĻž āϝāĻžāϝāĻŧ)
⭕★āĻŸā§‡āĻ•āύāĻŋāĻ•āσ
25 āĻĻāĻŋāϝāĻŧ⧇ āϝ⧇ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻŦ⧇āύ āϤāĻžāϕ⧇ 4 āĻĻāĻŋāϝāĻŧ⧇ āϗ⧁āĻŖ āĻ•āϰ⧁āύ āϤāĻžāϰāĻĒāϰ āĻĄāĻžāύāĻĻāĻŋāĻ• āĻĨ⧇āϕ⧇ 2 āϘāϰ āφāϗ⧇ āĻĻāĻļāĻŽāĻŋāĻ• āĻŦāϏāĻŋāϝāĻŧ⧇ āĻĻāĻŋāύāĨ¤ 13*4=52, āϤāĻžāϰāĻĒāϰ āĻĨ⧇āϕ⧇ 2 āϘāϰ āφāϗ⧇ āĻĻāĻļāĻŽāĻŋāĻ• āĻŦāϏāĻŋāϝāĻŧ⧇ āĻĻāĻŋāϞ⧇ 0.52 āĨ¤
02.🚩 210/25 = 8.40
03.🚩 0.03/25 = 0.0012
04.🚩 222,222/25 = 8,888.88
05🚩. 13,121,312/25 = 524,852.48
⭕👉 āĻ•ā§āϝāĻžāϞāϕ⧁āϞ⧇āϟāϰ āĻ›āĻžāĻĄāĻŧāĻž āϝ⧇ āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ 125 āĻĻāĻŋāϝāĻŧ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻžāϰ āĻāĻ•āϟāĻŋ effective āĻŸā§‡āĻ•āύāĻŋāĻ•
01.🚩 7/125 = 0.056
⭕★āĻŸā§‡āĻ•āύāĻŋāĻ•āσ
125 āĻĻāĻŋāϝāĻŧ⧇ āϝ⧇ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻŦ⧇āύ āϤāĻžāϕ⧇ 8 āĻĻāĻŋāϝāĻŧ⧇ āϗ⧁āĻŖ āĻ•āϰ⧁āύ āϤāĻžāϰāĻĒāϰ āĻĄāĻžāύāĻĻāĻŋāĻ• āĻĨ⧇āϕ⧇ 3 āϘāϰ āφāϗ⧇ āĻĻāĻļāĻŽāĻŋāĻ• āĻŦāϏāĻŋāϝāĻŧ⧇ āĻĻāĻŋāύāĨ¤ āĻ•āĻžāϜ āĻļ⧇āώ! 7*8=56, āϤāĻžāϰāĻĒāϰ āĻĨ⧇āϕ⧇ 3 āϘāϰ āφāϗ⧇ āĻĻāĻļāĻŽāĻŋāĻ• āĻŦāϏāĻŋāϝāĻŧ⧇ āĻĻāĻŋāϞ⧇ 0.056 āĨ¤
02.🚩 111/125 = 0.888
03.🚩 600/125 = 4.800
_____________________________________________
â­•đŸ—Ŗī¸đŸ‘‰āφāϏ⧁āύ āϏāĻšāĻœā§‡ āĻ•āϰāĻŋ
āϟāĻĒāĻŋāĻ•āσ 10 āϏ⧇āϕ⧇āĻ¨ā§āĻĄā§‡ āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ āύāĻŋāĻ°ā§āĻŖāϝāĻŧāĨ¤
āĻŦāĻŋāσāĻĻā§āϰāσ āϝ⧇ āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞ⧋āϰ āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ 1 āĻĨ⧇āϕ⧇ 99 āĻāϰ āĻŽāĻ§ā§āϝ⧇ āĻāχ āĻĒāĻĻā§āϧāϤāĻŋāϤ⧇ āϤāĻžāĻĻ⧇āϰ āĻŦ⧇āϰ āĻ•āϰāĻž āϝāĻžāĻŦ⧇ āϖ⧁āĻŦ āϏāĻšāĻœā§‡āχāĨ¤ āĻĒā§āϰāĻļā§āύ⧇ āĻ…āĻŦāĻļā§āϝāχ āĻĒā§‚āĻ°ā§āĻŖāĻŦāĻ°ā§āĻ— āϏāĻ‚āĻ–ā§āϝāĻž āĻĨāĻžāĻ•āĻž āϞāĻžāĻ—āĻŦ⧇āĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž āωāĻ¤ā§āϤāϰ āϝāĻĻāĻŋ āĻĻāĻļāĻŽāĻŋāĻ• āĻ­āĻ—ā§āύāĻžāĻ‚āĻļ āφāϏ⧇ āϤāĻŦ⧇ āĻāχ āĻĒāĻĻā§āĻŦāϤāĻŋ āĻ•āĻžāĻœā§‡ āφāϏāĻŦ⧇āύāĻžāĨ¤
āĻ…āĻŦāĻļā§āϝāχ āĻŽāύ⧋āϝ⧋āĻ— āĻĻāĻŋāϝāĻŧ⧇ āĻĒāĻĄāĻŧāϤ⧇ āĻšāĻŦ⧇ āĻāĻŦāĻ‚ āĻĒā§āĻ°ā§āϝāĻžāĻ•āϟāĻŋāϏ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤ āύāϝāĻŧāϤ āϭ⧁āϞ⧇ āϝāĻžāĻŦ⧇āύāĨ¤
āϤāĻŦ⧇ āφāϏ⧁āύ āĻļ⧁āϰ⧁ āĻ•āϰāĻž āϝāĻžāĻ•āĨ¤ āĻļ⧁āϰ⧁āϤ⧇ 1 āĻĨ⧇āϕ⧇ 9 āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻŦāĻ°ā§āĻ— āĻŽā§āĻ–āĻ¸ā§āĻĨ āĻ•āϰ⧇ āύāĻŋāχāĨ¤ āφāĻļāĻž āĻ•āϰāĻŋ āĻāϗ⧁āϞ⧋ āϏāĻŦāĻžāχ āϜāĻžāύ⧇āύāĨ¤ āϏ⧁āĻŦāĻŋāϧāĻžāϰ āϜāĻ¨ā§āϝ⧇ āφāĻŽāĻŋ āύāĻŋāĻšā§‡ āϞāĻŋāϖ⧇ āĻĻāĻŋāĻšā§āĻ›āĻŋ-
1 square = 1, 2 square = 4
3 square = 9, 4 square = 16
5 square = 25, 6 square = 36
7 square = 49, 8 square = 64
9 square = 81
āĻāĻ–āĻžāύ⧇ āĻĒā§āϰāĻ¤ā§āϝ⧇āĻ•āϟāĻž āĻŦāĻ°ā§āĻ— āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻĻāĻŋāϕ⧇ āϖ⧇āϝāĻŧāĻžāϞ āĻ•āϰāϞ⧇ āĻĻ⧇āĻ–āĻŦ⧇āύ, āϏāĻŦāĻžāϰ āĻļ⧇āώ⧇āϰ āĻ…āĻ‚āĻ•āϟāĻŋāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ -
★1 āφāϰ 9 āĻāϰ āĻŦāĻ°ā§āϗ⧇āϰ āĻļ⧇āώ āĻ…āĻ‚āĻ• āĻŽāĻŋāϞ āφāϛ⧇ (1, 81)
★2 āφāϰ 8 āĻāϰ āĻŦāĻ°ā§āϗ⧇āϰ āĻļ⧇āώ āĻ…āĻ‚āĻ• āĻŽāĻŋāϞ āφāϛ⧇(4, 64)
★3 āφāϰ 7 āĻāϰ āĻŦāĻ°ā§āϗ⧇āϰ āĻļ⧇āώ āĻ…āĻ‚āĻ• āĻŽāĻŋāϞ āφāϛ⧇ (9, 49);
★4 āφāϰ 6 āĻāϰ āĻŦāĻ°ā§āϗ⧇āϰ āĻļ⧇āώ āĻ…āĻ‚āĻ• āĻŽāĻŋāϞ āφāϛ⧇(16, 36);
āĻāĻŦāĻ‚ 5 āĻāĻ•āĻž frown emoticon
āĻāĻĻā§āĻĻ⧁āϰ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŦ⧁āĻāϤ⧇ āϝāĻĻāĻŋ āϕ⧋āύ āϏāĻŽāĻ¸ā§āϝāĻž āĻĨāĻžāϕ⧇ āϤāĻŦ⧇ āφāĻŦāĻžāϰ āĻĒāĻĄāĻŧ⧇ āύāĻŋāύāĨ¤
đŸ—Ŗī¸āωāĻĻāĻžāĻšāϰāĻŖ:- 576 āĻāϰ āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰ⧁āύāĨ¤
👉āĻĒā§āϰāĻĨāĻŽ āϧāĻžāĻĒāσ āϝ⧇ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇ āϤāĻžāϰ āĻāĻ•āϕ⧇āϰ āϘāϰ⧇āϰ āĻ…āĻ‚āĻ•āϟāĻŋ āĻĻ⧇āĻ–āĻŦ⧇āύāĨ¤ āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āϤāĻž āĻšāĻšā§āϛ⧇ '6' āĨ¤
👉 āĻĻā§āĻŦāĻŋāϤ⧀āϝāĻŧ āϧāĻžāĻĒāσ āωāĻĒāϰ⧇āϰ āϞāĻŋāĻ¸ā§āϟ āĻĨ⧇āϕ⧇ āϏ⧇ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻŦāĻ°ā§āϗ⧇āϰ āĻļ⧇āώ āĻ…āĻ‚āĻ• 6 āϤāĻžāĻĻ⧇āϰ āύāĻŋāĻŦ⧇āύāĨ¤ āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ 4 āĻāĻŦāĻ‚ 6 āĨ¤ āφāĻŦāĻžāϰ āĻŦāϞāĻŋ, āϖ⧇āϝāĻŧāĻžāϞ āĻ•āϰ⧁āύ- 4 āĻāĻŦāĻ‚ 6 āĻāϰ āĻŦāĻ°ā§āĻ— āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ 16 āĻāĻŦāĻ‚ 36; āϝāĻžāĻĻ⧇āϰ āĻāĻ•āϕ⧇āϰ āϘāϰ⧇āϰ āĻ…āĻ‚āĻ• āĻ•āĻŋāύāĻž '6' āĨ¤ āĻŦ⧁āĻāϤ⧇ āĻĒ⧇āϰ⧇āϛ⧇āύ? āύāĻž āĻŦ⧁āĻāϞ⧇ āφāĻŦāĻžāϰ āĻĒāĻĄāĻŧ⧇ āĻĻ⧇āϖ⧁āύāĨ¤
👉 āϤ⧃āϤ⧀āϝāĻŧ āϧāĻžāĻĒāσ 4 / 6 āϞāĻŋāϖ⧇ āϰāĻžāϖ⧁āύ āĻ–āĻžāϤāĻžāϝāĻŧāĨ¤ (āφāĻŽāϰāĻž āωāĻ¤ā§āϤāϰ⧇āϰ āĻāĻ•āϕ⧇āϰ āϘāϰ⧇āϰ āĻ…āĻ‚āĻ• āĻĒ⧇āϝāĻŧ⧇ āϗ⧇āĻ›āĻŋ, āϝāĻž āĻšāĻšā§āϛ⧇ 4 āĻ…āĻĨāĻŦāĻž 6; āĻ•āĻŋāĻ¨ā§āϤ⧁ āϕ⧋āύāϟāĻž? āĻāϰ āωāĻ¤ā§āϤāϰ āĻĒāĻžāĻŦ⧇āύ āĻ…āĻˇā§āϟāĻŽ āϧāĻžāĻĒ⧇, āĻĒāĻĄāĻŧāϤ⧇ āĻĨāĻžāϕ⧁āύ ...)
👉 āϚāϤ⧁āĻ°ā§āĻĨ āϧāĻžāĻĒāσ āĻĒā§āϰāĻļā§āύ⧇āϰ āĻāĻ•āĻ• āφāϰ āĻĻāĻļāϕ⧇āϰ āĻ…āĻ‚āĻ• āĻŦāĻžāĻĻ āĻĻāĻŋāϝāĻŧ⧇ āĻŦāĻžāĻ•āĻŋ āĻ…āĻ‚āϕ⧇āϰ āĻĻāĻŋāϕ⧇ āϤāĻžāĻ•āĻžāύāĨ¤ āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āĻāϟāĻŋ āĻšāĻšā§āϛ⧇ 5 āĨ¤
👉āĻĒāĻžā§āϚāĻŽ āϧāĻžāĻĒāσ āωāĻĒāϰ⧇āϰ āϞāĻŋāĻ¸ā§āϟ āĻĨ⧇āϕ⧇ 5 āĻāϰ āĻ•āĻžāĻ›āĻžāĻ•āĻžāĻ›āĻŋ āϝ⧇ āĻŦāĻ°ā§āĻ— āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ āφāϛ⧇ āϤāĻžāϰ āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞāϟāĻž āύāĻŋāύāĨ¤ āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ 4, āϝāĻž āĻ•āĻŋāύāĻž 2 āĻāϰ āĻŦāĻ°ā§āĻ—āĨ¤ (āφāĻŽāϰāĻž āωāĻ¤ā§āϤāϰ⧇āϰ āĻĻāĻļāϕ⧇āϰ āϘāϰ⧇āϰ āĻ…āĻ‚āĻ• āĻĒ⧇āϝāĻŧ⧇ āϗ⧇āĻ›āĻŋ, āϝāĻž āĻšāĻšā§āϛ⧇ 2 )
👉āώāĻˇā§āĻ  āϧāĻžāĻĒāσ 2 āĻāϰ āϏāĻžāĻĨ⧇ āϤāĻžāϰ āĻĒāϰ⧇āϰ āϏāĻ‚āĻ–ā§āϝāĻž āϗ⧁āύ āĻ•āϰ⧁āύāĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž 2*3=6
👉āϏāĻĒā§āϤāĻŽ āϧāĻžāĻĒāσ āϚāϤ⧁āĻ°ā§āĻĨ āϧāĻžāĻĒ⧇ āĻĒāĻžāĻ“āϝāĻŧāĻž āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻž (5) āώāĻˇā§āĻ  āϧāĻžāĻĒ⧇ āĻĒāĻžāĻ“āϝāĻŧāĻž āϏāĻ‚āĻ–ā§āϝāĻžāϰ (6) āĻšā§‡āϝāĻŧ⧇ āϛ⧋āϟ āύāĻžāĻ•āĻŋ āĻŦāĻĄāĻŧ āĻĻ⧇āϖ⧁āύāĨ¤ āϛ⧋āϟ āĻšāϞ⧇ āϤ⧃āϤ⧀āϝāĻŧ āϧāĻžāĻĒ⧇ āĻĒāĻžāĻ“āϝāĻŧāĻž āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϛ⧋āϟāϟāĻŋ āύ⧇āĻŦ, āĻŦāĻĄāĻŧ āĻšāϞ⧇ āĻŦāĻĄāĻŧāϟāĻŋāĨ¤ (āĻŦ⧁āĻāϤ⧇ āĻĒ⧇āϰ⧇āϛ⧇āύ? āύāϝāĻŧāϤ āφāĻŦāĻžāϰ āĻĒāĻĄāĻŧ⧁āύ)
👉āĻ…āĻˇā§āϟāĻŽ āϧāĻžāĻĒāσ āφāĻŽāĻžāĻĻ⧇āϰ āωāĻĻāĻžāĻšāϰāϪ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ 5 āĻšāĻšā§āϛ⧇ 6 āĻāϰ āϛ⧋āϟ, āϤāĻžāχ āφāĻŽāϰāĻž 4 / 6 āĻŽāĻ§ā§āϝ⧇ āϛ⧋āϟ āϏāĻ‚āĻ–ā§āϝāĻž āĻ…āĻ°ā§āĻĨāĻžā§Ž 4 āύ⧇āĻŦāĨ¤
👉āύāĻŦāĻŽ āϧāĻžāĻĒāσ āĻŽāύ⧇ āφāϛ⧇, āĻĒāĻžā§āϚāĻŽ āϧāĻžāĻĒ⧇ āĻĻāĻļāϕ⧇āϰ āϘāϰ⧇āϰ āĻ…āĻ‚āĻ• āĻĒ⧇āϝāĻŧ⧇āĻ›āĻŋāϞāĻžāĻŽ 2 āĻāĻŦāĻžāϰ āĻĒ⧇āϝāĻŧ⧇āĻ›āĻŋ āĻāĻ•āϕ⧇āϰ āϘāϰ⧇āϰ āĻ…āĻ‚āĻ• 4 āĨ¤ āϤāĻžāχ āωāĻ¤ā§āϤāϰ āĻšāĻŦ⧇ 24
āĻ•āĻ āĻŋāύ āĻŽāύ⧇ āĻšāĻšā§āϛ⧇? āĻāĻ•āĻĻāĻŽāχ āύāĻž, āĻ•āϝāĻŧ⧇āĻ•āϟāĻž āĻĒā§āĻ°ā§āϝāĻžāĻ•āϟāĻŋāϏ āĻ•āϰ⧇ āĻĻ⧇āϖ⧁āύāĨ¤ āφāĻŽāĻžāϰ āĻŽāϤ⧇ āϖ⧁āĻŦ āĻŦ⧇āĻļāĻŋ āϏāĻŽāϝāĻŧ āϞāĻžāĻ—āĻžāϰ āĻ•āĻĨāĻž āύāĻžāĨ¤
đŸ—Ŗī¸āωāĻĻāĻžāĻšāϰāĻŖ:- 4225 āĻāϰ āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ āĻŦ⧇āϰ āĻ•āϰ⧁āύāĨ¤
āĻŽāύ⧇ āφāϛ⧇ 5 āϝ⧇ āĻāĻ•āĻž āĻ›āĻŋāϞ? āϏ⧇ āĻāĻ•āĻž āĻĨāĻžāĻ•āĻžāϝāĻŧ āφāĻĒāύāĻžāϰ āĻ•āĻžāϜ āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻ…āύ⧇āĻ• āϏ⧋āϜāĻž āĻšāϝāĻŧ⧇ āϗ⧇āϛ⧇āĨ¤ āĻĻ⧇āϖ⧁āύ āϕ⧇āύ⧋ āĻĒā§āϰāĻļā§āύ⧇āϰ āĻļ⧇āώ āĻ…āĻ‚āĻ• 5 āĻšāĻ“āϝāĻŧāĻžāϝāĻŧ āωāĻ¤ā§āϤāϰ⧇āϰ āĻāĻ•āϕ⧇āϰ āϘāϰ⧇āϰ āĻ…āĻ‚āĻ• āĻšāĻŦ⧇ āĻ…āĻŦāĻļā§āϝāχ 5 āĨ¤
- āĻĒā§āϰāĻļā§āύ⧇āϰ āĻāĻ•āĻ• āĻ“ āĻĻāĻļāϕ⧇āϰ āϘāϰ⧇āϰ āĻ…āĻ‚āĻ• āĻŦāĻžāĻĻ āĻĻāĻŋāϝāĻŧ⧇ āĻĻāĻŋāϞ⧇ āĻŦāĻžāĻ•āĻŋ āĻĨāĻžāϕ⧇ 42 āĨ¤
- 42 āĻāϰ āϏāĻŦāĻšā§‡āϝāĻŧ⧇ āĻ•āĻžāϛ⧇āϰ āĻĒā§‚āĻ°ā§āĻŖāĻŦāĻ°ā§āĻ— āϏāĻ‚āĻ–ā§āϝāĻž āĻšāĻšā§āϛ⧇ 36, āϝāĻžāϰ āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ āĻšāĻšā§āϛ⧇ 6 āĨ¤ āϤāĻžāχ āωāĻ¤ā§āϤāϰ āĻšāĻšā§āϛ⧇ 65
_____________________________________________
💚
â„šī¸1. āĻĒāĻžāρāϚ āĻ…āĻ™ā§āϕ⧇āϰ āĻ•ā§āώ⧁āĻĻā§āϰāϤāĻŽ āϏāĻ‚āĻ–ā§āϝāĻž āĻāĻŦāĻ‚ āϚāĻžāϰ āĻ…āĻ™ā§āϕ⧇āϰ āĻŦ⧃āĻšāĻ¤ā§āϤāĻŽ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻ…āĻ¨ā§āϤāϰ āĻ•āϤ?
āωāσ ā§§āĨ¤(ā§§ā§Ļā§Ļā§Ļā§Ļ-⧝⧝⧝⧝)
â„šī¸2. ā§Ļ,ā§§,⧍ āĻāĻŦāĻ‚ ā§Š āĻĻā§āĻŦāĻžāϰāĻž āĻ—āĻ āĻŋāϤ āϚāĻžāϰ āĻ…āĻ™ā§āϕ⧇āϰ āĻŦ⧃āĻšāĻ¤ā§āϤāĻŽ āĻāĻŦāĻ‚ āĻ•ā§āώ⧁āĻĻā§āϰāϤāĻŽ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻŦāĻŋāϝāĻŧā§‹āĻ—āĻĢāϞ-
āωāσ ā§¨ā§§ā§Žā§­āĨ¤(ā§Šā§¨ā§§ā§Ļ-ā§§ā§Ļā§¨ā§Š)
â„šī¸3.āϝāĻĻāĻŋ ā§§ āĻĨ⧇āϕ⧇ ā§§ā§Ļā§Ļ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻ—āĻŖāύāĻž āĻ•āϰāĻž āĻšāϝāĻŧ āϤāĻŦ⧇ āĻāϰ āĻŽāĻ§ā§āϝ⧇ āĻ•āϤāϟāĻŋ ā§Ģ āĻĒāĻžāĻŦā§‹āĨ¤
āωāσ ⧍ā§ĻāϟāĻŋāĨ¤
*ā§§āĻĨ⧇āϕ⧇ ā§§ā§Ļā§Ļ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ ā§Ļ=ā§§ā§§āϟāĻŋ
ā§§ āĻĨ⧇āϕ⧇ ā§§ā§Ļā§Ļ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ ā§§=⧍⧧āϟāĻŋ
ā§§ āĻĨ⧇āϕ⧇ ā§§ā§Ļā§Ļ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ ⧍āĻĨ⧇āϕ⧇ ⧝ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻ…āĻ™ā§āĻ•āϗ⧁āϞ⧋ āĻĒāĻžāĻ“āϝāĻŧāĻž āϝāĻžāĻŦ⧇=⧍ā§ĻāϟāĻŋāĨ¤
â„šī¸4. ⧭⧍ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋāϰ āĻŽā§‹āϟ āĻ­āĻžāϜāĻ• ?
āωāσ ⧧⧍āϟāĻŋ
*⧭⧍=ā§§Ã—ā§­ā§¨=ā§¨Ã—ā§Šā§Ŧ=ā§ŠÃ—ā§¨ā§Ē=ā§ĒÃ—ā§§ā§Ž=ā§ŦÃ—ā§§ā§¨=ā§ŽÃ—ā§¯
⧭⧍ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ āĻ­āĻžāϜāĻ•=ā§§,⧍,ā§Š,ā§Ē,ā§Ŧ,ā§Ž,⧝,⧧⧍,ā§§ā§Ž,⧍ā§Ē,ā§Šā§Ŧ,⧭⧍āĨ¤
â„šī¸5. ā§§ āĻĨ⧇āϕ⧇ ā§§ā§Ļā§Ļ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āĻ•āϤāϟāĻŋ?
āωāσ ⧍ā§ĢāϟāĻŋāĨ¤
â„šī¸6. (ā§Ļ.ā§Ļā§§)^⧍ āĻāϰ āĻŽāĻžāύ āϕ⧋āύ āĻ­āĻ—ā§āύāĻžāĻ‚āĻļāϟāĻŋāϰ āϏāĻŽāĻžāύ
āωāσ ā§§/ā§§ā§Ļā§Ļā§Ļā§Ļ
*(ā§Ļ.ā§Ļā§§)^⧍=ā§Ļ.ā§Ļā§§Ã—ā§Ļ.ā§Ļā§§
=ā§Ļ.ā§Ļā§Ļā§Ļā§§
=ā§§/ā§§ā§Ļā§Ļā§Ļā§Ļ
â„šī¸7. āĻĻ⧁āχāϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϏāĻŽāĻˇā§āϟāĻŋ ā§­ā§Ļ āĻāĻŦāĻ‚ āĻ…āĻ¨ā§āϤāϰāĻĢāϞ ā§§ā§Ļ āĻšāϞ⧇ āĻŦāĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ
āωāσ ā§Ēā§Ļ
*āĻŦāĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ=ā§­ā§Ļ+ā§§ā§Ļ
=ā§Žā§ĻÃˇā§¨
=ā§Ēā§Ļ
â„šī¸8. āĻāĻ•āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž ā§­ā§Ē⧍ āĻĨ⧇āϕ⧇ āϝāϤ āĻŦāĻĄāĻŧ ā§Žā§Šā§Ļ āĻĨ⧇āϕ⧇ āϤāϤ āϛ⧋āϟāĨ¤ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ āĻ•āϤ?
āωāσ ā§­ā§Žā§Ŧ
*āύāĻŋāĻ°ā§āĻŖāϝāĻŧ⧇ āϏāĻ‚āĻ–ā§āϝāĻž=ā§­ā§Ē⧍+ā§Žā§Šā§Ļ
=ā§§ā§Ģā§­ā§¨Ãˇā§¨
=ā§­ā§Žā§Ŧ
â„šī¸9.āĻĻ⧁āχāϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϗ⧁āĻŖāĻĢāϞ ā§§ā§Ģā§Šā§Ŧ āϏāĻ‚āĻ–ā§āϝāĻž āĻĻ⧁āϟāĻŋāϰ āϞ āϏāĻž āϗ⧁ ⧝ā§Ŧ āĻšāϞ⧇ āĻ— āϏāĻž āϗ⧁ āĻ•āϤ?
āωāσ ā§§ā§Ŧ
* āϞ āϏāĻž āϗ⧁ × āĻ— āϏāĻž āϗ⧁ = āϗ⧁āύāĻĢāϞ
⧝ā§Ŧ×āĻ— āϏāĻž āϗ⧁ = ā§§ā§Ģā§Šā§Ŧ
āĻ— āϏāĻž āϗ⧁ = ā§§ā§Ģā§Šā§ŦÃˇā§¯ā§Ŧ
=ā§§ā§Ŧ
â„šī¸10. āĻ…āύ⧁āĻĒāĻžāϤ āĻ•āĻŋ?
āωāσ āĻāĻ•āϟāĻŋ āĻ­āĻ—ā§āύāĻžāĻ‚āĻļ
â„šī¸11. ⧍ā§Ē āϕ⧇ ā§­:ā§Ŧ āĻ…āύ⧁āĻĒāĻžāϤ⧇ āĻŦ⧃āĻĻā§āϧāĻŋ āĻ•āϰāϞ⧇ āύāϤ⧁āύ āϏāĻ‚āĻ–ā§āϝāĻž āĻšāĻŦ⧇?
āωāσ ā§¨ā§Ž
*āύāϤ⧁āύ āϏāĻ‚āĻ–ā§āϝāĻžÃˇā§¨ā§Ē=ā§­/ā§Ŧ
āύāϤ⧁āύ āϏāĻ‚āĻ–ā§āϝāĻž =ā§­Ã—ā§¨ā§ĒÃˇā§Ŧ
=ā§­Ã—ā§Ē
=ā§¨ā§Ž
â„šī¸12. ā§§ āĻĨ⧇āϕ⧇ ā§Ē⧝ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āϗ⧁āϞ⧋āϰ āĻ—āĻĄāĻŧ āĻ•āϤ?
āωāσ ⧍ā§Ģ
*āύāĻŋāĻ°ā§āĻŖāϝāĻŧ⧇ āĻ—āĻĄāĻŧ=
āĻļ⧇āώāĻĒāĻĻ +āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻÃˇā§¨
ā§Ē⧝+ā§§=ā§Ģā§ĻÃˇā§¨=⧍ā§Ģ
â„šī¸13.ā§§ āĻĨ⧇āϕ⧇ ⧝⧝ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞ⧋āϰ āϏāĻŽāĻˇā§āϟāĻŋ āĻ•āϤ?
āωāσ ā§Ē⧝ā§Ģā§Ļ
*āϏāĻŽāĻˇā§āϟāĻŋ=n(n+ā§§)Ãˇā§¨
=⧝⧝(⧝⧝+ā§§)Ãˇā§¨
=ā§¯ā§¯Ã—ā§§ā§Ļā§ĻÃˇā§¨
=ā§¯ā§¯Ã—ā§Ģā§Ļ
=ā§Ē⧝ā§Ģā§Ļ
-----------------------------------------------------
📚1 āĻĢ⧁āϟ = 12 āχāĻžā§āϚāĻŋ
1 āĻ—āϜ = 3 āĻĢ⧁āϟ
1 āĻŽāĻžāχāϞ = ā§§ā§­ā§Ŧā§Ļ āĻ—āϜ
1 āĻŽāĻžāχāϞ ≈ 1.61 āĻ•āĻŋāϞ⧋āĻŽāĻŋāϟāĻžāϰ
1 āχāĻžā§āϚāĻŋ = 2.54 āϏ⧇āĻ¨ā§āϟāĻŋāĻŽāĻŋāϟāĻžāϰ
1 āĻĢ⧁āϟ = 0.3048 āĻŽāĻŋāϟāĻžāϰ
1 āĻŽāĻŋāϟāĻžāϰ = 1,000 āĻŽāĻŋāϞāĻŋāĻŽāĻŋāϟāĻžāϰ
1 āĻŽāĻŋāϟāĻžāϰ = 100 āϏ⧇āĻ¨ā§āϟāĻŋāĻŽāĻŋāϟāĻžāϰ
1 āĻ•āĻŋāϞ⧋āĻŽāĻŋāϟāĻžāϰ = 1,000 āĻŽāĻŋāϟāĻžāϰ
1 āĻ•āĻŋāϞ⧋āĻŽāĻŋāϟāĻžāϰ ≈ 0.62 āĻŽāĻžāχāϞ
📝āĻ•ā§āώ⧇āĻ¤ā§āϰāσ
1 āĻŦāĻ°ā§āĻ— āĻĢ⧁āϟ = 144 āĻŦāĻ°ā§āĻ— āχāĻžā§āϚāĻŋ
1 āĻŦāĻ°ā§āĻ— āĻ—āϜ = 9 āĻŦāĻ°ā§āĻ— āĻĢ⧁āϟ
1 āĻāĻ•āϰ = 43560 āĻŦāĻ°ā§āĻ— āĻĢ⧁āϟ
📝 āφāϝāĻŧāϤāύāσ
1 āϞāĻŋāϟāĻžāϰ ≈ 0.264 āĻ—ā§āϝāĻžāϞāύ
1 āϘāύ āĻĢ⧁āϟ = 1.728 āϘāύ āχāĻžā§āϚāĻŋ
1 āϘāύ āĻ—āϜ = 27 āϘāύ āĻĢ⧁āϟ
📝 āĻ“āϜāύāσ
1 āφāωāĻ¨ā§āϏ ≈ 28.350 āĻ—ā§āϰāĻžāĻŽ
1 cvDÛ= 16 āφāωāĻ¨ā§āϏ
1 cvDÛ ≈ 453.592 āĻ—ā§āϰāĻžāĻŽ
1 āĻāĻ• āĻ—ā§āϰāĻžāĻŽā§‡āϰ āĻāĻ°ā§āĻ•āϏāĻšāĻ¸ā§āϰāĻžāĻ‚āĻļ = 0.001āĻ—ā§āϰāĻžāĻŽ
1 āĻ•āĻŋāϞ⧋āĻ—ā§āϰāĻžāĻŽ = 1,000 āĻ—ā§āϰāĻžāĻŽ
1 āĻ•āĻŋāϞ⧋āĻ—ā§āϰāĻžāĻŽ ≈ 2.2 āĻĒāĻžāωāĻ¨ā§āĻĄ
1 āϟāύ = 2,200 āĻĒāĻžāωāĻ¨ā§āĻĄ
📚 āĻŽāĻŋāϞāĻŋāϝāĻŧāύ, āĻŦāĻŋāϞāĻŋāϝāĻŧāύ, āĻŸā§āϰāĻŋāϞāĻŋāϝāĻŧāύ āĻšāĻŋāϏāĻžāĻŦ
ā§§ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļ āϞāĻ•ā§āώ
ā§§ā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ āϕ⧋āϟāĻŋ
ā§§ā§Ļā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļ āϕ⧋āϟāĻŋ
ā§§,ā§Ļā§Ļā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļā§Ļ āϕ⧋āϟāĻŋ
āφāĻŦāĻžāϰ,
ā§§,ā§Ļā§Ļā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ= ā§§ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ
ā§§ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļā§Ļ āϕ⧋āϟāĻŋ
ā§§ā§Ļ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ=ā§§,ā§Ļā§Ļā§Ļ āϕ⧋āϟāĻŋ
ā§§ā§Ļā§Ļ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļ,ā§Ļā§Ļā§Ļ āϕ⧋āϟāĻŋ
ā§§,ā§Ļā§Ļā§Ļ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ āϞāĻ•ā§āώ āϕ⧋āϟāĻŋ
āφāĻŦāĻžāϰ,
ā§§,ā§Ļā§Ļā§Ļ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ āĻŸā§āϰāĻŋāϞāĻŋāϝāĻŧāύ
ā§§ āĻŸā§āϰāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ āϞāĻ•ā§āώ āϕ⧋āϟāĻŋ
ā§§ā§Ļ āĻŸā§āϰāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļ āϞāĻ•ā§āώ āϕ⧋āϟāĻŋ
ā§§ā§Ļā§Ļ āĻŸā§āϰāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļā§Ļ āϞāĻ•ā§āώ āϕ⧋āϟāĻŋ
ā§§,ā§Ļā§Ļā§Ļ āĻŸā§āϰāĻŋāϞāĻŋāϝāĻŧāύ=ā§§,ā§Ļā§Ļā§Ļ āϞāĻ•ā§āώ āϕ⧋āϟāĻŋāĨ¤
-----------------------------
ā§§ āϰāĻŋāĻŽ = ⧍ā§Ļ āĻĻāĻŋāĻ¸ā§āϤāĻž = ā§Ģā§Ļā§Ļ āϤāĻž
ā§§ āĻ­āϰāĻŋ = ā§§ā§Ŧ āφāύāĻž ;
ā§§ āφāύāĻž = ā§Ŧ āϰāϤāĻŋ
ā§§ āĻ—āϜ = ā§Š āĻĢ⧁āϟ = ⧍ āĻšāĻžāϤ
ā§§ āϕ⧇āϜāĻŋ = ā§§ā§Ļā§Ļā§Ļ āĻ—ā§āϰāĻžāĻŽ
ā§§ āϕ⧁āχāĻ¨ā§āϟāĻžāϞ = ā§§ā§Ļā§Ļ āϕ⧇āϜāĻŋ
ā§§ āĻŽā§‡āĻŸā§āϰāĻŋāĻ• āϟāύ = ā§§ā§Ļ āϕ⧁āχāĻ¨ā§āϟāĻžāϞ = ā§§ā§Ļā§Ļā§Ļ āϕ⧇āϜāĻŋ
ā§§ āϞāĻŋāϟāĻžāϰ = ā§§ā§Ļā§Ļā§Ļ āϏāĻŋāϏāĻŋ
ā§§ āĻŽāĻŖ = ā§Ēā§Ļ āϏ⧇āϰ
ā§§ āĻŦāĻŋāϘāĻž = ⧍ā§Ļ āĻ•āĻžāĻ āĻž( ā§Šā§Š āĻļāϤāĻžāĻ‚āĻļ) ;
ā§§ āĻ•āĻžāĻ āĻž = ⧭⧍ā§Ļ āĻŦāĻ°ā§āĻ—āĻĢ⧁āϟ (ā§Žā§Ļ āĻŦāĻ°ā§āĻ— āĻ—āϜ)
1 āĻŽāĻŋāϞāĻŋāϝāĻŧāύ = 10 āϞāĻ•ā§āώ
1 āĻŽāĻžāχāϞ = 1.61 āĻ•āĻŋ.āĻŽāĻŋ ;
1 āĻ•āĻŋ.āĻŽāĻŋ. = 0..62
1 āχāĻžā§āϚāĻŋ = 2.54 āϏ⧇.āĻŽāĻŋ ;
1 āĻŽāĻŋāϟāĻžāϰ = 39.37 āχāĻžā§āϚāĻŋ
1 āϕ⧇.āϜāĻŋ = 2.20 āĻĒāĻžāωāĻ¨ā§āĻĄ ;
1 āϏ⧇āϰ = 0.93 āĻ•āĻŋāϞ⧋āĻ—ā§āϰāĻžāĻŽ
1 āĻŽā§‡. āϟāύ = 1000 āĻ•āĻŋāϞ⧋āĻ—ā§āϰāĻžāĻŽ ;
1 āĻĒāĻžāωāĻ¨ā§āĻĄ = 16 āφāωāĻ¨ā§āϏ
1 āĻ—āϜ= 3 āĻĢ⧁āϟ ;
1 āĻāĻ•āϰ = 100 āĻļāϤāĻ•
1 āĻŦāĻ°ā§āĻ— āĻ•āĻŋ.āĻŽāĻŋ.= 247 āĻāĻ•āϰ
āĻĒā§āϰāĻļā§āύāσ ā§§ āĻ•āĻŋāĻŽāĻŋ āϏāĻŽāĻžāύ āĻ•āϤ āĻŽāĻžāχāϞ ?
āωāĻ¤ā§āϤāϰāσ ā§Ļ.ā§Ŧ⧍ āĻŽāĻžāχāϞāĨ¤
āĻĒā§āϰāĻļā§āύāσ ā§§ āύ⧇āϟāĻŋāĻ•ā§āϝāĻžāϞ āĻŽāĻžāχāϞ⧇ āĻ•āϤ āĻŽāĻŋāϟāĻžāϰ ?
āωāĻ¤ā§āϤāϰāσ ā§§ā§Žā§Ģā§Š.ā§¨ā§Ž āĻŽāĻŋāϟāĻžāϰāĨ¤
āĻĒā§āϰāĻļā§āύāσ āϏāĻŽā§āĻĻā§āϰ⧇āϰ āϜāϞ⧇āϰ āĻ—āĻ­ā§€āϰāϤāĻž āĻŽāĻžāĻĒāĻžāϰ
āĻāĻ•āĻ• ?
āωāĻ¤ā§āϤāϰāσ āĻĢā§āϝāĻžāĻĻāĻŽāĨ¤
āĻĒā§āϰāĻļā§āύāσ ā§§.ā§Ģ āχāĻžā§āϚāĻŋ ā§§ āĻĢ⧁āĻŸā§‡āϰ āĻ•āϤ āĻ…āĻ‚āĻļ?
āωāĻ¤ā§āϤāϰāσ ā§§/ā§Ž āĻ…āĻ‚āĻļāĨ¤
ā§§āĻŽāĻžāχāϞ =ā§§ā§­ā§Ŧā§Ļ āĻ—āϜāĨ¤]
āĻĒā§āϰāĻļā§āύāσ āĻāĻ• āĻŦāĻ°ā§āĻ— āĻ•āĻŋāϞ⧋āĻŽāĻŋāϟāĻžāϰ āĻ•āϤ āĻāĻ•āϰ?
āωāĻ¤ā§āϤāϰāσ ⧍ā§Ēā§­ āĻāĻ•āϰāĨ¤
āĻĒā§āϰāĻļā§āύāσ āĻāĻ•āϟāĻŋ āϜāĻŽāĻŋāϰ āĻĒāϰāĻŋāĻŽāĻžāύ ā§Ģ āĻ•āĻžāĻ āĻž āĻšāϞ⧇,
āϤāĻž āĻ•āϤ āĻŦāĻ°ā§āĻ—āĻĢ⧁āϟ āĻšāĻŦ⧇?
āωāĻ¤ā§āϤāϰāσ ā§Šā§Ŧā§Ļā§Ļ āĻŦāĻ°ā§āĻ—āĻĢ⧁āϟāĨ¤
āĻĒā§āϰāĻļā§āύāσ āĻāĻ• āĻŦāĻ°ā§āĻ— āχāĻžā§āϚāĻŋāϤ⧇ āĻ•āϤ āĻŦāĻ°ā§āĻ—
āϏ⧇āĻ¨ā§āϟāĻŋāĻŽāĻŋāϟāĻžāϰ?
āωāĻ¤ā§āϤāϰāσ ā§Ŧ.ā§Ēā§Ģ āϏ⧇āĻ¨ā§āϟāĻŋāĻŽāĻŋāϟāĻžāϰāĨ¤
āĻĒā§āϰāĻļā§āύāσ ā§§ āϘāύ āĻŽāĻŋāϟāĻžāϰ = āĻ•āϤ āϞāĻŋāϟāĻžāϰ?
āωāĻ¤ā§āϤāϰāσ ā§§ā§Ļā§Ļā§Ļ āϞāĻŋāϟāĻžāϰāĨ¤
āĻĒā§āϰāĻļā§āύāσ āĻāĻ• āĻ—ā§āϝāĻžāϞāύ⧇ āĻ•āϝāĻŧ āϞāĻŋāϟāĻžāϰ?
āωāĻ¤ā§āϤāϰāσ ā§Ē.ā§Ģā§Ģ āϞāĻŋāϟāĻžāϰāĨ¤
āĻĒā§āϰāĻļā§āύāσ ā§§ āϏ⧇āϰ āϏāĻŽāĻžāύ āĻ•āϤ āϕ⧇āϜāĻŋ?
āωāĻ¤ā§āϤāϰāσ ā§Ļ.ā§¯ā§Š āϕ⧇āϜāĻŋāĨ¤
āĻĒā§āϰāĻļā§āύāσ ā§§ āĻŽāϪ⧇ āĻ•āϤ āϕ⧇āϜāĻŋ?
āωāĻ¤ā§āϤāϰāσ ā§Šā§­.ā§Šā§¨ āϕ⧇āϜāĻŋāĨ¤
āĻĒā§āϰāĻļā§āύāσ ā§§ āϟāύ⧇ āĻ•āϤ āϕ⧇āϜāĻŋ?
āωāĻ¤ā§āϤāϰāσ ā§§ā§Ļā§Ļā§Ļ āϕ⧇āϜāĻŋāĨ¤
āĻĒā§āϰāĻļā§āύāσ ā§§ āϕ⧇āϜāĻŋāϤ⧇ āĻ•āϤ āĻĒāĻžāωāĻ¨ā§āĻĄ??
āωāĻ¤ā§āϤāϰāσ ⧍.⧍ā§Ļā§Ē āĻĒāĻžāωāĻ¨ā§āĻĄāĨ¤
āĻĒā§āϰāĻļā§āύāσ ā§§ āϕ⧁āχāĻ¨ā§āϟāĻžāϞ⧇ āĻ•āϤ āϕ⧇āϜāĻŋ?
āωāĻ¤ā§āϤāϰāσ ā§§ā§Ļā§Ļāϕ⧇āϜāĻŋāĨ¤
--------------------------------
📑British & U.S British U.S
1 gallons = 4.5434 litres = 4.404
litres
2 gallons = 1 peck = 9.8070 litres
= 8.810 litres
-----------------------------------------
📝āĻ•ā§āϝāĻžāϰ⧇āϟ āĻ•āĻŋ?.
āωāĻ¤ā§āϤāϰāσ āĻŽā§‚āĻ˛ā§āϝāĻŦāĻžāύ āĻĒāĻžāĻĨāϰ āĻ“ āϧāĻžāϤ⧁āϏāĻžāĻŽāĻ—ā§āϰ⧀
āĻĒāϰāĻŋāĻŽāĻžāĻĒ⧇āϰ āĻāĻ•āĻ• āĻ•ā§āϝāĻžāϰ⧇āϟ āĨ¤
1 āĻ•ā§āϝāĻžāϰ⧇āϟ =0 .2 āĻ—ā§āϰāĻžāĻŽ
📝āĻŦ⧇āϞ āĻ•āĻŋ?
āωāĻ¤ā§āϤāϰāσ āĻĒāĻžāϟ āĻŦāĻž āϤ⧁āϞāĻž āĻĒāϰāĻŋāĻŽāĻžāĻĒ⧇āϰ āϏāĻŽāϝāĻŧ ‘āĻŦ⧇āĻ˛â€™
āĻāĻ•āĻ• āĻšāĻŋāϏāĻžāĻŦ⧇ āĻŦā§āϝāĻŦāĻšā§ƒāϤ āĻšāϝāĻŧ āĨ¤
1 āĻŦ⧇āϞ = 3.5 āĻŽāĻŖ (āĻĒā§āϰāĻžāϝāĻŧ) āĨ¤

(āϏāĻ‚āĻ—ā§ƒāĻšā§€āϤ)

āĻļ⧁āĻ­ āĻ•āĻžāĻŽāύāĻžā§Ÿ: â¤ī¸

⧍ā§Ļ āĻŦāĻ›āϰ⧇āϰ ⧍ā§Ļ āϟāĻŋ āĻ›āĻŦāĻŋāĨ¤đŸ’™đŸ‡Ļ🇷āĻŦāĻŋāĻļā§āĻŦāϏ⧇āϰāĻž āĻĢ⧁āϟāĻŦāϞāĻžāϰ āϞāĻŋāĻ“āύ⧇āϞ āĻŽā§‡āϏāĻŋāĨ¤â¤ī¸đŸ‡Ļ🇷
05/09/2025

⧍ā§Ļ āĻŦāĻ›āϰ⧇āϰ ⧍ā§Ļ āϟāĻŋ āĻ›āĻŦāĻŋāĨ¤đŸ’™đŸ‡Ļ🇷
āĻŦāĻŋāĻļā§āĻŦāϏ⧇āϰāĻž āĻĢ⧁āϟāĻŦāϞāĻžāϰ āϞāĻŋāĻ“āύ⧇āϞ āĻŽā§‡āϏāĻŋāĨ¤â¤ī¸đŸ‡Ļ🇷

āχāĻ¨ā§āϟāĻžāϰāĻ­āĻŋāω āĻ¸ā§āĻĒ⧇āĻļāĻžāϞ[āϝ⧇āϕ⧋āύ⧋ āϚāĻžāĻ•āϰāĻŋāϰ āĻ­āĻžāχāĻ­āĻžāϤ⧇ āĻ•āĻžāĻœā§‡ āϞāĻžāĻ—āĻŦ⧇]Common viva question with answer.
04/09/2025

āχāĻ¨ā§āϟāĻžāϰāĻ­āĻŋāω āĻ¸ā§āĻĒ⧇āĻļāĻžāϞ
[āϝ⧇āϕ⧋āύ⧋ āϚāĻžāĻ•āϰāĻŋāϰ āĻ­āĻžāχāĻ­āĻžāϤ⧇ āĻ•āĻžāĻœā§‡ āϞāĻžāĻ—āĻŦ⧇]
Common viva question with answer.

02/09/2025
31/08/2025

āφāϰāĻŦ āĻ­ā§‚āĻŽāĻŋāϰ āĻ•ā§ŒāĻļāϞāĻ—āϤ āĻ…āĻŦāĻ¸ā§āĻĨāĻžāύ⧇āϰ āĻ•āĻžāϰāϪ⧇ āχāϏāϞāĻžāĻŽ āĻĻā§āϰ⧁āϤ āĻāĻļāĻŋ⧟āĻž, āφāĻĢā§āϰāĻŋāĻ•āĻž āĻ“ āχāωāϰ⧋āĻĒ⧇ āĻ›ā§œāĻŋā§Ÿā§‡ āĻĒā§œā§‡āĨ¤ āϤāĻžāρāϰ āφāĻ—āĻŽāύ āĻŽāĻžāύāĻŦāϜāĻžāϤāĻŋāϰ āϜāĻ¨ā§āϝ āĻāĻ•āϟāĻŋ āύāϤ.....

31/08/2025
āφāĻŽāĻžāĻĻ⧇āϰ āϜāĻžāĻ¤ā§€ā§Ÿ āĻ•āĻŦāĻŋ āĻ•āĻžāĻœā§€ āύāϜāϰ⧁āϞ āχāϏāϞāĻžāĻŽā§‡āϰ āĻŽā§ƒāĻ¤ā§āϝ⧁āĻŦāĻžāĻ°ā§āώāĻŋāϕ⧀āϤ⧇ āĻ—āĻ­ā§€āϰ āĻļā§āϰāĻĻā§āϧāĻž āĻ“ āĻ­āĻžāϞ⧋āĻŦāĻžāϏāĻž...
27/08/2025

āφāĻŽāĻžāĻĻ⧇āϰ āϜāĻžāĻ¤ā§€ā§Ÿ āĻ•āĻŦāĻŋ āĻ•āĻžāĻœā§€ āύāϜāϰ⧁āϞ āχāϏāϞāĻžāĻŽā§‡āϰ āĻŽā§ƒāĻ¤ā§āϝ⧁āĻŦāĻžāĻ°ā§āώāĻŋāϕ⧀āϤ⧇ āĻ—āĻ­ā§€āϰ āĻļā§āϰāĻĻā§āϧāĻž āĻ“ āĻ­āĻžāϞ⧋āĻŦāĻžāϏāĻž...

āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āĻŦāĻŋāϚāĻŋāĻ¤ā§āϰāĻžā§§ā§­ āĻŽā§‡ '⧝ā§Ŧ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻ•āĻ­āĻžāϰāĨ¤
21/08/2025

āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āĻŦāĻŋāϚāĻŋāĻ¤ā§āϰāĻž
ā§§ā§­ āĻŽā§‡ '⧝ā§Ŧ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻ•āĻ­āĻžāϰāĨ¤

⧍ā§Ļā§Ļā§Ē āϏāĻžāϞ⧇āϰ āφāϜāϕ⧇āϰ āĻāχāĻĻāĻŋāύ⧇ āϭ⧟āĻžāϞ āĻāϕ⧁āĻļ⧇ āφāĻ—āĻ¸ā§āϟ āĻ—ā§āϰ⧇āύ⧇āĻĄ āĻšāĻžāĻŽāϞāĻžā§Ÿ āĻļāĻšā§€āĻĻ āύāĻžāϰ⧀ āύ⧇āĻ¤ā§āϰ⧀ āφāχāĻ­āĻŋ āφāĻĒāĻž āϏāĻš āϏāĻ•āϞ āĻļāĻšā§€āĻĻāĻĻ⧇āϰāϕ⧇ āĻŦāĻŋāύāĻŽā§āϰ āĻļā§āϰāĻĻā§āϧāĻžā§Ÿ āĻ¸ā§āĻŽāϰāĻŖ...
21/08/2025

⧍ā§Ļā§Ļā§Ē āϏāĻžāϞ⧇āϰ āφāϜāϕ⧇āϰ āĻāχāĻĻāĻŋāύ⧇ āϭ⧟āĻžāϞ āĻāϕ⧁āĻļ⧇ āφāĻ—āĻ¸ā§āϟ āĻ—ā§āϰ⧇āύ⧇āĻĄ āĻšāĻžāĻŽāϞāĻžā§Ÿ āĻļāĻšā§€āĻĻ āύāĻžāϰ⧀ āύ⧇āĻ¤ā§āϰ⧀ āφāχāĻ­āĻŋ āφāĻĒāĻž āϏāĻš āϏāĻ•āϞ āĻļāĻšā§€āĻĻāĻĻ⧇āϰāϕ⧇ āĻŦāĻŋāύāĻŽā§āϰ āĻļā§āϰāĻĻā§āϧāĻžā§Ÿ āĻ¸ā§āĻŽāϰāĻŖ āĻ•āϰāĻ›āĻŋāĨ¤

āϜāĻžāϤāĻŋāϰ āĻļā§āϰ⧇āĻˇā§āĻ  āϏāĻ¨ā§āϤāĻžāύāϰāĻž āĻĨāĻžāϕ⧁āĻ• āφāĻŽāĻžāĻĻ⧇āϰ āϚāĻŋāĻ¨ā§āϤāĻžā§Ÿ-āĻšā§‡āϤāύāĻžā§Ÿ, āĻŽāύāύ⧇, āĻ­āĻžāϞ⧋āĻŦāĻžāϏāĻžā§Ÿ āĻāĻŦāĻ‚ āĻĒā§āϰ⧇āϰāĻŖāĻžā§ŸāĨ¤ āĻŦā§€āϰāĻļā§āϰ⧇āĻˇā§āĻ  āĻŽāϤāĻŋāωāϰ āϰāĻšāĻŽāĻžāύ āĻāϰ āĻŽā§ƒāĻ¤ā§āϝ⧁āĻŦāĻžāĻ°ā§āώāĻŋ...
20/08/2025

āϜāĻžāϤāĻŋāϰ āĻļā§āϰ⧇āĻˇā§āĻ  āϏāĻ¨ā§āϤāĻžāύāϰāĻž āĻĨāĻžāϕ⧁āĻ• āφāĻŽāĻžāĻĻ⧇āϰ āϚāĻŋāĻ¨ā§āϤāĻžā§Ÿ-āĻšā§‡āϤāύāĻžā§Ÿ, āĻŽāύāύ⧇, āĻ­āĻžāϞ⧋āĻŦāĻžāϏāĻžā§Ÿ āĻāĻŦāĻ‚ āĻĒā§āϰ⧇āϰāĻŖāĻžā§ŸāĨ¤

āĻŦā§€āϰāĻļā§āϰ⧇āĻˇā§āĻ  āĻŽāϤāĻŋāωāϰ āϰāĻšāĻŽāĻžāύ āĻāϰ āĻŽā§ƒāĻ¤ā§āϝ⧁āĻŦāĻžāĻ°ā§āώāĻŋāϕ⧀āϤ⧇ āϜāĻžāύāĻžāχ āĻļā§āϰāĻĻā§āϧāĻžāĨ¤

Notice Details:14 Aug, 2025AMIE Form Fillup Notice (April-2025)
16/08/2025

Notice Details:

14 Aug, 2025
AMIE Form Fillup Notice (April-2025)

āϜāĻžāϤāĻŋāϰ āĻĒāĻŋāϤāĻž āĻŦāĻ™ā§āĻ—āĻŦāĻ¨ā§āϧ⧁ āĻļ⧇āĻ– āĻŽā§āϜāĻŋāĻŦ⧁āϰ āϰāĻšāĻŽāĻžāύ āĻ“ āϤāĻžāρāϰ āĻĒāϰāĻŋāĻŦāĻžāϰ⧇āϰ  āĻĒā§āϰāϤāĻŋ āϜāĻžāĻ¤ā§€ā§Ÿ āĻļā§‹āĻ• āĻĻāĻŋāĻŦāϏ⧇ āĻļā§āϰāĻĻā§āϧāĻžāĻžā§āϜāϞāĻŋāĨ¤
15/08/2025

āϜāĻžāϤāĻŋāϰ āĻĒāĻŋāϤāĻž āĻŦāĻ™ā§āĻ—āĻŦāĻ¨ā§āϧ⧁ āĻļ⧇āĻ– āĻŽā§āϜāĻŋāĻŦ⧁āϰ āϰāĻšāĻŽāĻžāύ āĻ“ āϤāĻžāρāϰ āĻĒāϰāĻŋāĻŦāĻžāϰ⧇āϰ āĻĒā§āϰāϤāĻŋ āϜāĻžāĻ¤ā§€ā§Ÿ āĻļā§‹āĻ• āĻĻāĻŋāĻŦāϏ⧇ āĻļā§āϰāĻĻā§āϧāĻžāĻžā§āϜāϞāĻŋāĨ¤

Address

Dhaka
1000

Telephone

+8801622025910

Website

Alerts

Be the first to know and let us send you an email when Amie Of Ieb Supporters Group posts news and promotions. Your email address will not be used for any other purpose, and you can unsubscribe at any time.

Share

Category