
18/09/2025
đĨ āĻāĻžāϰā§āĻā§āĻ: ā§Ēā§ āĻ ā§Ē⧝āϤāĻŽ āĻŦāĻŋāϏāĻŋāĻāϏ!
đ¯ āĻāĻ āύāĻāϰ⧠āĻāĻŖāĻŋāϤā§āϰ āϏāĻāϞ āϏā§āϤā§āϰ-
â
āĻŦā§āĻāĻāĻžāĻŖāĻŋāϤāĻŋāĻ āϏā§āϤā§āϰāĻžāĻŦāϞā§
1.đŠ (a+b)²= a²+2ab+b²
2.đŠ (a+b)²= (a-b)²+4ab
3.đŠ (a-b)²= a²-2ab+b²
4.đŠ (a-b)²= (a+b)²-4ab
5.đŠ a² + b²= (a+b)²-2ab.
6.đŠ a² + b²= (a-b)²+2ab.
7.đŠ a²-b²= (a +b)(a -b)
8.đŠ 2(a²+b²)= (a+b)²+(a-b)²
9.đŠ 4ab = (a+b)²-(a-b)²
10.đŠ ab = {(a+b)/2}²-{(a-b)/2}²
11.đŠ (a+b+c)² = a²+b²+c²+2(ab+bc+ca)
12.đŠ (a+b)Âŗ = aÂŗ+3a²b+3ab²+bÂŗ
13.đŠ (a+b)Âŗ = aÂŗ+bÂŗ+3ab(a+b)
14.đŠ a-b)Âŗ= aÂŗ-3a²b+3ab²-bÂŗ
15.đŠ (a-b)Âŗ= aÂŗ-bÂŗ-3ab(a-b)
16.đŠ aÂŗ+bÂŗ= (a+b) (a²-ab+b²)
17.đŠ aÂŗ+bÂŗ= (a+b)Âŗ-3ab(a+b)
18.đŠ aÂŗ-bÂŗ = (a-b) (a²+ab+b²)
19.đŠ aÂŗ-bÂŗ = (a-b)Âŗ+3ab(a-b)
20. (a² + b² + c²) = (a + b + c)² â 2(ab + bc + ca)
21.đŠ 2 (ab + bc + ca) = (a + b + c)² â (a² + b² + c²)
22.đŠ (a + b + c)Âŗ = aÂŗ + bÂŗ + cÂŗ + 3 (a + b) (b + c) (c + a)
23.đŠ aÂŗ + bÂŗ + cÂŗ â 3abc =(a+b+c)(a² + b²+ c²âabâbcâ ca)
24.đŠ a3 + b3 + c3 â 3abc =ÂŊ (a+b+c) { (aâb)²+(bâc)²+(câa)²}
25.đŠ(x + a) (x + b) = x² + (a + b) x + ab
26.đŠ (x + a) (x â b) = x² + (a â b) x â ab
27.đŠ (x â a) (x + b) = x² + (b â a) x â ab
28.đŠ (x â a) (x â b) = x² â (a + b) x + ab
29.đŠ (x+p) (x+q) (x+r) = xÂŗ + (p+q+r) x² + (pq+qr+rp) x +pqr
30.đŠ bc (b-c) + ca (c- a) + ab (a - b) = - (b - c) (c- a) (a - b)
31.đŠ a² (b- c) + b² (c- a) + c² (a - b) = -(b-c) (c-a) (a - b)
32.đŠ a (b² - c²) + b (c² - a²) + c (a² - b²) = (b - c) (c- a) (a - b)
33.đŠ aÂŗ (b - c) + bÂŗ (c-a) +cÂŗ (a -b) =- (b-c) (c-a) (a - b)(a + b + c)
34.đŠ b²-c² (b²-c²) + c²a²(c²-a²)+a²b²(a²-b²)=-(b-c) (c-a) (a-b) (b+c) (c+a) (a+b)
35.đŠ (ab + bc+ca) (a+b+c) - abc = (a + b)(b + c) (c+a)
36.đŠ (b + c)(c + a)(a + b) + abc = (a + b +c) (ab + bc + ca)
_____________________________________________
đ¯āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰ
1.āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = (āĻĻā§āϰā§āĻā§āϝ à āĻĒā§āϰāϏā§āĻĨ) āĻŦāϰā§āĻ āĻāĻāĻ
2.āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž = 2 (āĻĻā§āϰā§āĻā§āϝ+āĻĒā§āϰāϏā§āĻĨ)āĻāĻāĻ
3.āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰā§āϰ āĻāϰā§āĻŖ = â(āĻĻā§āϰā§āĻā§āĻ¯Â˛+āĻĒā§āϰāϏā§āĻĨ²)āĻāĻāĻ
4.āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰā§āϰ āĻĻā§āϰā§āĻā§āϝ= āĻā§āώā§āϤā§āϰāĻĢāĻ˛ÃˇāĻĒā§āϰāϏā§āϤ āĻāĻāĻ
5.āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰā§āϰ āĻĒā§āϰāϏā§āϤ= āĻā§āώā§āϤā§āϰāĻĢāĻ˛ÃˇāĻĻā§āϰā§āĻā§āϝ āĻāĻāĻ
_____________________________________________
đ¯āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰ
1.āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = (āϝ⧠āĻā§āύ āĻāĻāĻāĻŋ āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝ)² āĻŦāϰā§āĻ āĻāĻāĻ
2.āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž = 4 à āĻāĻ āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝ āĻāĻāĻ
3.āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ āĻāϰā§āĻŖ=â2 à āĻāĻ āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝ āĻāĻāĻ
4.āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ āĻŦāĻžāĻšā§=âāĻā§āώā§āϤā§āϰāĻĢāϞ āĻŦāĻž āĻĒāϰāĻŋāϏā§āĻŽāĻžÃˇ4 āĻāĻ
_____________________________________________
đ¯āϤā§āϰāĻŋāĻā§āĻ
1.āϏāĻŽāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = âžÃ(āĻŦāĻžāĻšā§)²
2.āϏāĻŽāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻāĻā§āĻāϤāĻž = â3/2Ã(āĻŦāĻžāĻšā§)
3.āĻŦāĻŋāώāĻŽāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = âs(s-a) (s-b) (s-c)
āĻāĻāĻžāύ⧠a, b, c āϤā§āϰāĻŋāĻā§āĻā§āϰ āϤāĻŋāύāĻāĻŋ āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝ, s=āĻ
āϰā§āϧāĻĒāϰāĻŋāϏā§āĻŽāĻž
â
āĻĒāϰāĻŋāϏā§āĻŽāĻž 2s=(a+b+c)
4āϏāĻžāϧāĻžāϰāĻŖ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ
(āĻā§āĻŽāĻŋÃāĻāĻā§āĻāϤāĻž) āĻŦāϰā§āĻ āĻāĻāĻ
5.āϏāĻŽāĻā§āĻŖā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ(aÃb)
āĻāĻāĻžāύ⧠āϤā§āϰāĻŋāĻā§āĻā§āϰ āϏāĻŽāĻā§āĻŖ āϏāĻāϞāĻā§āύ āĻŦāĻžāĻšā§āĻĻā§āĻŦāϝāĻŧ a āĻāĻŦāĻ b.
6.āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2â4b²-a²/4 āĻāĻāĻžāύā§, a= āĻā§āĻŽāĻŋ; b= āĻ
āĻĒāϰ āĻŦāĻžāĻšā§āĨ¤
7.āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻāĻā§āĻāϤāĻž = 2(āĻā§āώā§āϤā§āϰāĻĢāϞ/āĻā§āĻŽāĻŋ)
8.āϏāĻŽāĻā§āĻŖā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻ
āϤāĻŋāĻā§āĻ =â āϞāĻŽā§āĻŦ²+āĻā§āĻŽāĻŋ²
9.āϞāĻŽā§āĻŦ =âāĻ
āϤāĻŋāĻā§āϲ-āĻā§āĻŽāĻŋ²
10.āĻā§āĻŽāĻŋ = âāĻ
āϤāĻŋāĻā§āϲ-āϞāĻŽā§āĻŦ²
11.āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻāĻā§āĻāϤāĻž = âb² - a²/4
āĻāĻāĻžāύ⧠a= āĻā§āĻŽāĻŋ; b= āϏāĻŽāĻžāύ āĻĻā§āĻ āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝāĨ¤
12.â
āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž=āϤāĻŋāύ āĻŦāĻžāĻšā§āϰ āϏāĻŽāώā§āĻāĻŋ
_____________________________________________
đ¯āϰāĻŽā§āĻŦāϏ
1.āϰāĻŽā§āĻŦāϏā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊà (āĻāϰā§āĻŖāĻĻā§āĻāĻāĻŋāϰ āĻā§āĻŖāĻĢāϞ)
2.āϰāĻŽā§āĻŦāϏā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž = 4à āĻāĻ āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝ
____________________________________________
đ¯āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ
1.āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = āĻā§āĻŽāĻŋ à āĻāĻā§āĻāϤāĻž =
2.āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž = 2Ã(āϏāύā§āύāĻŋāĻšāĻŋāϤ āĻŦāĻžāĻšā§āĻĻā§āĻŦāϝāĻŧā§āϰ āϏāĻŽāώā§āĻāĻŋ)
_____________________________________________
đ¯āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽ
1. āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ =ÂŊÃ(āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āĻŦāĻžāĻšā§ āĻĻā§āĻāĻāĻŋāϰ āϝāĻžā§āĻāĻĢāϞ)ÃāĻāĻā§āĻāϤāĻž
_____________________________________________
āĻāύāĻ
1.āĻāύāĻā§āϰ āĻāύāĻĢāϞ = (āϝā§āĻā§āύ āĻŦāĻžāĻšā§)Âŗ āĻāύ āĻāĻāĻ
2.āĻāύāĻā§āϰ āϏāĻŽāĻā§āϰāϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 6à āĻŦāĻžāĻšā§Â˛ āĻŦāϰā§āĻ āĻāĻāĻ
3.āĻāύāĻā§āϰ āĻāϰā§āĻŖ = â3ÃāĻŦāĻžāĻšā§ āĻāĻāĻ
_____________________________________________
đ¯āĻāϝāĻŧāϤāĻāύāĻ
1.āĻāϝāĻŧāϤāĻāύāĻā§āϰ āĻāύāĻĢāϞ = (āĻĻā§ā§°ā§āĻāĻžÃāĻĒā§āϰāϏā§āϤÃāĻāĻā§āĻāϤāĻž) āĻāύ āĻāĻāĻ
2.āĻāϝāĻŧāϤāĻāύāĻā§āϰ āϏāĻŽāĻā§āϰāϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2(ab + bc + ca) āĻŦāϰā§āĻ āĻāĻāĻ
[ āϝā§āĻāĻžāύ⧠a = āĻĻā§āϰā§āĻā§āϝ b = āĻĒā§āϰāϏā§āϤ c = āĻāĻā§āĻāϤāĻž ]
3.āĻāϝāĻŧāϤāĻāύāĻā§āϰ āĻāϰā§āĻŖ = âa²+b²+c² āĻāĻāĻ
4. āĻāĻžāϰāĻŋ āĻĻā§āĻāϝāĻŧāĻžāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2(āĻĻā§āϰā§āĻā§āϝ + āĻĒā§āϰāϏā§āĻĨ)ÃāĻāĻā§āĻāϤāĻž
_____________________________________________
đ¯āĻŦā§āϤā§āϤ
1.āĻŦā§āϤā§āϤā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = Īr²=22/7r² {āĻāĻāĻžāύ⧠Ī=āϧā§āϰā§āĻŦāĻ 22/7, āĻŦā§āϤā§āϤā§āϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ= r}
2. āĻŦā§āϤā§āϤā§āϰ āĻĒāϰāĻŋāϧāĻŋ = 2Īr
3. āĻā§āϞāĻā§āϰ āĻĒā§āώā§āĻ āϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 4Īr² āĻŦāϰā§āĻ āĻāĻāĻ
4. āĻā§āϞāĻā§āϰ āĻāϝāĻŧāϤāύ = 4ĪrÂŗÃˇ3 āĻāύ āĻāĻāĻ
5. h āĻāĻā§āĻāϤāĻžāϝāĻŧ āϤāϞāĻā§āĻā§āĻĻā§ āĻā§āĻĒāύā§āύ āĻŦā§āϤā§āϤā§āϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ = âr²-h² āĻāĻāĻ
6.āĻŦā§āϤā§āϤāĻāĻžāĻĒā§āϰ āĻĻā§āϰā§āĻā§āϝ s=Īrθ/180° ,
āĻāĻāĻžāĻ¨ā§ Î¸ =āĻā§āĻŖ
_____________________________________________
đ¯āϏāĻŽāĻŦā§āϤā§āϤāĻā§āĻŽāĻŋāĻ āϏāĻŋāϞāĻŋāύā§āĻĄāĻžāϰ / āĻŦā§āϞāύ
āϏāĻŽāĻŦā§āϤā§āϤāĻā§āĻŽāĻŋāĻ āϏāĻŋāϞāĻŋāύā§āĻĄāĻžāϰā§āϰ āĻā§āĻŽāĻŋāϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ r āĻāĻŦāĻ āĻāĻā§āĻāϤāĻž h āĻāϰ āĻšā§āϞāĻžāύ⧠āϤāϞā§āϰ āĻāĻā§āĻāϤāĻž l āĻšāϞā§,
1.āϏāĻŋāϞāĻŋāύā§āĻĄāĻžāϰā§āϰ āĻāϝāĻŧāϤāύ = Īr²h
2.āϏāĻŋāϞāĻŋāύā§āĻĄāĻžāϰā§āϰ āĻŦāĻā§āϰāϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ (āϏāĻŋāĻāϏāĻ) = 2ĪrhāĨ¤
3.āϏāĻŋāϞāĻŋāύā§āĻĄāĻžāϰā§āϰ āĻĒā§āώā§āĻ āϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ (āĻāĻŋāĻāϏāĻ) = 2Īr (h + r)
_____________________________________________
đ¯āϏāĻŽāĻŦā§āϤā§āϤāĻā§āĻŽāĻŋāĻ āĻā§āĻŖāĻ
āϏāĻŽāĻŦā§āϤā§āϤāĻā§āĻŽāĻŋāĻ āĻā§āĻŽāĻŋāϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ r āĻāĻŦāĻ āĻāĻā§āĻāϤāĻž h āĻāϰ āĻšā§āϞāĻžāύ⧠āϤāϞā§āϰ āĻāĻā§āĻāϤāĻž l āĻšāϞā§,
1.āĻā§āĻŖāĻā§āϰ āĻŦāĻā§āϰāϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ= Īrl āĻŦāϰā§āĻ āĻāĻāĻ
2.āĻā§āĻŖāĻā§āϰ āϏāĻŽāϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ= Īr(r+l) āĻŦāϰā§āĻ āĻāĻāĻ
3.āĻā§āĻŖāĻā§āϰ āĻāϝāĻŧāϤāύ= â
Īr²h āĻāύ āĻāĻāĻ
âŽāĻŦāĻšā§āĻā§āĻā§āϰ āĻāϰā§āĻŖā§āϰ āϏāĻāĻā§āϝāĻž= n(n-3)/2
âŽāĻŦāĻšā§āĻā§āĻā§āϰ āĻā§āĻŖāĻā§āϞāĻŋāϰ āϏāĻŽāώā§āĻāĻŋ=(2n-4)āϏāĻŽāĻā§āĻŖ
āĻāĻāĻžāύ⧠n=āĻŦāĻžāĻšā§āϰ āϏāĻāĻā§āϝāĻž
â
āϏā§āώāĻŽ āĻŦāĻšā§āĻā§āĻ āĻāϰ āĻā§āώā§āϤā§āϰā§
āĻ
āύā§āϤāĻāĻā§āĻŖ + āĻŦāĻšāĻŋāĻāĻā§āĻŖ=180°
āĻŦāĻžāĻšā§ āϏāĻāĻā§āϝāĻž=360°/āĻŦāĻšāĻŋāĻ āĻā§āĻŖ
â
āĻāϤā§āϰā§āĻā§āĻā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž=āĻāĻžāϰ āĻŦāĻžāĻšā§āϰ āϏāĻŽāώā§āĻāĻŋ
_____________________________________________
đ¯āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāϰ āϏā§āϤā§āϰāĻžāĻŦāϞā§āĻ
1. sinθ=⤞āĻŽā§āĻŦ/āĻ
āϤāĻŋāĻā§āĻ
2. cosθ=āĻā§āĻŽāĻŋ/āĻ
āϤāĻŋāĻā§āĻ
3. taneθ=⤞āĻŽā§āĻŦ/āĻā§āĻŽāĻŋ
4. cotθ=āĻā§āĻŽāĻŋ/āϞāĻŽā§āĻŦ
5. secθ=āĻ
āϤāĻŋāĻā§āĻ/āĻā§āĻŽāĻŋ
6. cosecθ=āĻ
āϤāĻŋāĻā§āĻ/āϞāĻŽā§āĻŦ
7. sinθ=1/cosecθ, cosecθ=1/sinθ
8. cosθ=1/secθ, secθ=1/cosθ
9. tanθ=1/cotθ, cotθ=1/tanθ
10. sin²θ + cos²θ= 1
11. sin²θ = 1 - cos²θ
12. cos²θ = 1- sin²θ
13. sec²θ - tan²θ = 1
14. sec²θ = 1+ tan²θ
15. tan²θ = sec²θ - 1
16, cosec²θ - cot²θ = 1
17. cosec²θ = cot²θ + 1
18. cot²θ = cosec²θ - 1
_____________________________________________
đ¯ āĻŦāĻŋāϝāĻŧāĻžā§āĻā§āϰ āϏā§āϤā§āϰāĻžāĻŦāϞāĻŋ
1. āĻŦāĻŋāϝāĻŧāĻžā§āĻāύ-āĻŦāĻŋāϝāĻŧā§āĻā§āϝ =āĻŦāĻŋāϝāĻŧā§āĻāĻĢāϞāĨ¤
2.āĻŦāĻŋāϝāĻŧāĻžā§āĻāύ=āĻŦāĻŋāϝāĻŧāĻžā§āĻāĻĢ + āĻŦāĻŋāϝāĻŧāĻžā§āĻā§āϝ
3.āĻŦāĻŋāϝāĻŧāĻžā§āĻā§āϝ=āĻŦāĻŋāϝāĻŧāĻžā§āĻāύ-āĻŦāĻŋāϝāĻŧāĻžā§āĻāĻĢāϞ
_____________________________________________
đ¯āĻā§āĻŖā§āϰ āϏā§āϤā§āϰāĻžāĻŦāϞāĻŋ
1.āĻā§āĻŖāĻĢāϞ =āĻā§āĻŖā§āϝ à āĻā§āĻŖāĻ
2.āĻā§āĻŖāĻ = āĻā§āĻŖāĻĢāϞ Ãˇ āĻā§āĻŖā§āϝ
3.āĻā§āĻŖā§āϝ= āĻā§āĻŖāĻĢāϞ Ãˇ āĻā§āĻŖāĻ
_____________________________________________
đ¯āĻāĻžāĻā§āϰ āϏā§āϤā§āϰāĻžāĻŦāϞāĻŋ
āύāĻŋāĻāĻļā§āώ⧠āĻŦāĻŋāĻāĻžāĻā§āϝ āύāĻž āĻšāϞā§āĨ¤
1.āĻāĻžāĻā§āϝ= āĻāĻžāĻāĻ Ã āĻāĻžāĻāĻĢāϞ + āĻāĻžāĻāĻļā§āώāĨ¤
2.āĻāĻžāĻāĻ= (āĻāĻžāĻā§āϝâ āĻāĻžāĻāĻļā§āώ) Ãˇ āĻāĻžāĻāĻĢāϞāĨ¤
3.āĻāĻžāĻāĻĢāϞ = (āĻāĻžāĻā§āϝ â āĻāĻžāĻāĻļā§āώ)Ãˇ āĻāĻžāĻāĻāĨ¤
*āύāĻŋāĻāĻļā§āώ⧠āĻŦāĻŋāĻāĻžāĻā§āϝ āĻšāϞā§āĨ¤
4.āĻāĻžāĻāĻ= āĻāĻžāĻā§āĻ¯Ãˇ āĻāĻžāĻāĻĢāϞāĨ¤
5.āĻāĻžāĻāĻĢāϞ = āĻāĻžāĻā§āϝ Ãˇ āĻāĻžāĻāĻāĨ¤
6.āĻāĻžāĻā§āϝ = āĻāĻžāĻāĻ Ã āĻāĻžāĻāĻĢāϞāĨ¤
_____________________________________________
đ¯āĻāĻā§āύāĻžāĻāĻļā§āϰ āϞ.āϏāĻž.āĻā§ āĻ āĻ.āϏāĻž.āĻā§ āϏā§āϤā§āϰāĻžāĻŦāϞā§
1.āĻāĻā§āύāĻžāĻāĻļā§āϰ āĻ.āϏāĻž.āĻā§ = āϞāĻŦāĻā§āϞāĻžā§āϰ āĻ.āϏāĻž.āĻā§ / āĻšāϰāĻā§āϞāĻžā§āϰ āϞ.āϏāĻž.āĻā§
2.āĻāĻā§āύāĻžāĻāĻļā§āϰ āϞ.āϏāĻž.āĻā§ =āϞāĻŦāĻā§āϞāĻžā§āϰ āϞ.āϏāĻž.āĻā§ /āĻšāϰāĻā§āϞāĻžāϰ āĻ.āϏāĻž.āĻā§
3.āĻāĻā§āύāĻžāĻāĻļāĻĻā§āĻŦāϝāĻŧā§āϰ āĻā§āĻŖāĻĢāϞ = āĻāĻā§āύāĻžāĻāĻļāĻĻā§āĻŦāϝāĻŧā§āϰ āϞ.āϏāĻž.āĻā§ Ã āĻāĻā§āύāĻžāĻāĻļāĻĻā§āĻŦāϝāĻŧā§āϰ āĻ.āϏāĻž.āĻā§.
_____________________________________________
đ¯āĻāĻĄāĻŧ āύāĻŋāϰā§āĻŖāϝāĻŧ
1.āĻāĻĄāĻŧ = āϰāĻžāĻļāĻŋ āϏāĻŽāώā§āĻāĻŋ /āϰāĻžāĻļāĻŋ āϏāĻāĻā§āϝāĻž
2.āϰāĻžāĻļāĻŋāϰ āϏāĻŽāώā§āĻāĻŋ = āĻāĻĄāĻŧ ÃāϰāĻžāĻļāĻŋāϰ āϏāĻāĻā§āϝāĻž
3.āϰāĻžāĻļāĻŋāϰ āϏāĻāĻā§āϝāĻž = āϰāĻžāĻļāĻŋāϰ āϏāĻŽāώā§āĻāĻŋ Ãˇ āĻāĻĄāĻŧ
4.āĻāϝāĻŧā§āϰ āĻāĻĄāĻŧ = āĻŽāĻžā§āĻ āĻāϝāĻŧā§āϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖ / āĻŽāĻžā§āĻ āϞāĻžā§āĻā§āϰ āϏāĻāĻā§āϝāĻž
5.āϏāĻāĻā§āϝāĻžāϰ āĻāĻĄāĻŧ = āϏāĻāĻā§āϝāĻžāĻā§āϞāĻžā§āϰ āϝāĻžā§āĻāĻĢāϞ /āϏāĻāĻā§āϝāĻžāϰ āĻĒāϰāĻŋāĻŽāĻžāύ āĻŦāĻž āϏāĻāĻā§āϝāĻž
6.āĻā§āϰāĻŽāĻŋāĻ āϧāĻžāϰāĻžāϰ āĻāĻĄāĻŧ =āĻļā§āώ āĻĒāĻĻ +ā§§āĻŽ āĻĒāĻĻ /2
_____________________________________________
đ¯āϏā§āĻĻāĻāώāĻžāϰ āĻĒāϰāĻŋāĻŽāĻžāύ āύāĻŋāϰā§āύāϝāĻŧā§āϰ āϏā§āϤā§āϰāĻžāĻŦāϞā§
1. āϏā§āĻĻ = (āϏā§āĻĻā§āϰ āĻšāĻžāϰÃāĻāϏāϞÃāϏāĻŽāϝāĻŧ) Ãˇā§§ā§Ļā§Ļ
2. āϏāĻŽāϝāĻŧ = (100à āϏā§āĻĻ)Ãˇ (āĻāϏāϞÃāϏā§āĻĻā§āϰ āĻšāĻžāϰ)
3. āϏā§āĻĻā§āϰ āĻšāĻžāϰ = (100ÃāϏā§āĻĻ)Ãˇ(āĻāϏāϞÃāϏāĻŽāϝāĻŧ)
4. āĻāϏāϞ = (100ÃāϏā§āĻĻ)Ãˇ(āϏāĻŽāϝāĻŧÃāϏā§āĻĻā§āϰ āĻšāĻžāϰ)
5. āĻāϏāϞ = {100Ã(āϏā§āĻĻ-āĻŽā§āϞ)}Ãˇ(100+āϏā§āĻĻā§āϰ āĻšāĻžāϰÃāϏāĻŽāϝāĻŧ )
6. āϏā§āĻĻāĻžāϏāϞ = āĻāϏāϞ + āϏā§āĻĻ
7. āϏā§āĻĻāĻžāϏāϞ = āĻāϏāϞ Ã(1+ āϏā§āĻĻā§āϰ āĻšāĻžāϰ)à āϏāĻŽāϝāĻŧ |[āĻāĻā§āϰāĻŦā§āĻĻā§āϧāĻŋ āϏā§āĻĻā§āϰ āĻā§āώā§āϤā§āϰā§]āĨ¤
_____________________________________________
âđŖī¸āϞāĻžāĻ-āĻā§āώāϤāĻŋāϰ āĻāĻŦāĻ āĻā§āϰāϝāĻŧ-āĻŦāĻŋāĻā§āϰāϝāĻŧā§āϰ āϏā§āϤā§āϰāĻžāĻŦāϞā§đŠ
1. āϞāĻžāĻ = āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ-āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ
2.āĻā§āώāϤāĻŋ = āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ-āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ
3.āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ = āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ-āϞāĻžāĻ
āĻ
āĻĨāĻŦāĻž
āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ = āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ + āĻā§āώāϤāĻŋ
4.āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ = āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ + āϞāĻžāĻ
āĻ
āĻĨāĻŦāĻž
āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ = āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ-āĻā§āώāϤāĻŋ
_____________________________________________
âđŖī¸1-100 āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻžāĻŽāύ⧠āϰāĻžāĻāĻžāϰ āϏāĻšāĻ āĻāĻĒāĻžāϝāĻŧāĻđŠ
āĻļāϰā§āĻāĻāĻžāĻ :- 44 -22 -322-321
â
1āĻĨā§āĻā§100āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=25āĻāĻŋ
â
1āĻĨā§āĻā§10āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=4āĻāĻŋ 2,3,5,7
â
11āĻĨā§āĻā§20āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=4āĻāĻŋ 11,13,17,19
â
21āĻĨā§āĻā§30āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=2āĻāĻŋ 23,29
â
31āĻĨā§āĻā§40āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=2āĻāĻŋ 31,37
â
41āĻĨā§āĻā§50āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=3āĻāĻŋ 41,43,47
â
51āĻĨā§āĻā§ 60āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=2āĻāĻŋ 53,59
â
61āĻĨā§āĻā§70āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=2āĻāĻŋ 61,67
â
71āĻĨā§āĻā§80 āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=3āĻāĻŋ 71,73,79
â
81āĻĨā§āĻā§ 90āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=2āĻāĻŋ 83,89
â
91āĻĨā§āĻā§100āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=1āĻāĻŋ 97
đŠ1-100 āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž 25 āĻāĻŋāĻ
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
đŠ1-100āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āϝā§āĻāĻĢāϞ
1060āĨ¤
_____________________________________________
đŠ1.āĻā§āύ āĻāĻŋāĻā§āϰ
āĻāϤāĻŋāĻŦā§āĻ= āĻ
āϤāĻŋāĻā§āϰāĻžāύā§āϤ āĻĻā§āϰāϤā§āĻŦ/āϏāĻŽāϝāĻŧ
2.āĻ
āϤāĻŋāĻā§āϰāĻžāύā§āϤ āĻĻā§āϰāϤā§āĻŦ = āĻāϤāĻŋāĻŦā§āĻÃāϏāĻŽāϝāĻŧ
3.āϏāĻŽāϝāĻŧ= āĻŽā§āĻ āĻĻā§āϰāϤā§āĻŦ/āĻŦā§āĻ
4.āϏā§āϰā§āϤā§āϰ āĻ
āύā§āĻā§āϞ⧠āύā§āĻāĻžāϰ āĻāĻžāϰā§āϝāĻāϰ⧠āĻāϤāĻŋāĻŦā§āĻ = āύā§āĻāĻžāϰ āĻĒā§āϰāĻā§āϤ āĻāϤāĻŋāĻŦā§āĻ + āϏā§āϰā§āϤā§āϰ āĻāϤāĻŋāĻŦā§āĻāĨ¤
5.āϏā§āϰā§āϤā§āϰ āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠āύā§āĻāĻžāϰ āĻāĻžāϰā§āϝāĻāϰ⧠āĻāϤāĻŋāĻŦā§āĻ = āύā§āĻāĻžāϰ āĻĒā§āϰāĻā§āϤ āĻāϤāĻŋāĻŦā§āĻ - āϏā§āϰā§āϤā§āϰ āĻāϤāĻŋāĻŦā§āĻ
_____________________________________________
đŖī¸āϏāϰāϞ āϏā§āĻĻđŠ
āϝāĻĻāĻŋ āĻāϏāϞ=P, āϏāĻŽāϝāĻŧ=T, āϏā§āĻĻā§āϰ āĻšāĻžāϰ=R, āϏā§āĻĻ-āĻāϏāϞ=A āĻšāϝāĻŧ, āϤāĻžāĻšāϞā§
1.āϏā§āĻĻā§āϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖ= PRT/100
2.āĻāϏāϞ= 100ÃāϏā§āĻĻ-āĻāϏāϞ(A)/100+TR
_____________________________________________
âđŠāύā§āĻāĻžāϰ āĻāϤāĻŋ āϏā§āϰā§āϤā§āϰ āĻ
āύā§āĻā§āϞ⧠āĻāύā§āĻāĻžāϝāĻŧ 10 āĻāĻŋ.āĻŽāĻŋ. āĻāĻŦāĻ āϏā§āϰā§āϤā§āϰ āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠2 āĻāĻŋ.āĻŽāĻŋ.āĨ¤ āϏā§āϰā§āϤā§āϰ āĻŦā§āĻ āĻāϤ?
â
āĻā§āĻāύāĻŋāĻ-
āϏā§āϰā§āϤā§āϰ āĻŦā§āĻ = (āϏā§āϰā§āϤā§āϰ āĻ
āύā§āĻā§āϞ⧠āύā§āĻāĻžāϰ āĻŦā§āĻ - āϏā§āϰā§āϤā§āϰ āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠āύā§āĻāĻžāϰ āĻŦā§āĻ) /2
= (10 - 2)/2=
= 4 āĻāĻŋ.āĻŽāĻŋ.
đŠāĻāĻāĻāĻŋ āύā§āĻāĻž āϏā§āϰā§āϤā§āϰ āĻ
āύā§āĻā§āϞ⧠āĻāύā§āĻāĻžāϝāĻŧ 8 āĻāĻŋ.āĻŽāĻŋ.āĻāĻŦāĻ āϏā§āϰā§āϤā§āϰ āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠āĻāύā§āĻāĻžāϝāĻŧ 4 āĻāĻŋ.āĻŽāĻŋ.
āϝāĻžāϝāĻŧāĨ¤ āύā§āĻāĻžāϰ āĻŦā§āĻ āĻāϤ?
â
āĻā§āĻāύāĻŋāĻ-
āύā§āĻāĻžāϰ āĻŦā§āĻ = (āϏā§āϰā§āϤā§āϰ āĻ
āύā§āĻā§āϞ⧠āύā§āĻāĻžāϰ āĻŦā§āĻ+āϏā§āϰā§āϤā§āϰ āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠āύā§āĻāĻžāϰ āĻŦā§āĻ)/2
= (8 + 4)/2
=6 āĻāĻŋ.āĻŽāĻŋ.
đŠāύā§āĻāĻž āĻ āϏā§āϰā§āϤā§āϰ āĻŦā§āĻ āĻāύā§āĻāĻžāϝāĻŧ āϝāĻĨāĻžāĻā§āϰāĻŽā§ 10 āĻāĻŋ.āĻŽāĻŋ. āĻ 5 āĻāĻŋ.āĻŽāĻŋ.āĨ¤ āύāĻĻā§āĻĒāĻĨā§ 45 āĻāĻŋ.āĻŽāĻŋ. āĻĒāĻĨ āĻāĻāĻŦāĻžāϰ āĻāĻŋāϝāĻŧā§ āĻĢāĻŋāϰ⧠āĻāϏāϤ⧠āĻāϤ āϏāĻŽāϝāĻŧ āϞāĻžāĻāĻŦā§?
āĻā§āĻāύāĻŋāĻ-
â
āĻŽāĻžā§āĻ āϏāĻŽāϝāĻŧ = [(āĻŽāĻžā§āĻ āĻĻā§āϰāϤā§āĻŦ/ āĻ
āύā§āĻā§āϞ⧠āĻŦā§āĻ) + (āĻŽāĻžā§āĻ āĻĻā§āϰāϤā§āĻŦ/āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠āĻŦā§āĻ)]
āĻāϤā§āϤāϰ:āϏā§āϰā§āϤā§āϰ āĻ
āύā§āĻā§āϞ⧠āύā§āĻāĻžāϰāĻŦā§āĻ = (10+5) = 15 āĻāĻŋ.āĻŽāĻŋ.
āϏā§āϰā§āϤā§āϰ āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠āύā§āĻāĻžāϰ āĻŦā§āĻ = (10-5) = 5āĻāĻŋ.āĻŽāĻŋ.
[(45/15) +(45/5)]
= 3+9
=12 āĻāύā§āĻāĻž
_____________________________________________
đŠâ
āϏāĻŽāĻžāύā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻā§āϰāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āϝā§āĻāĻĢāϞ-
(āϝāĻāύ āϏāĻāĻā§āϝāĻžāĻāĻŋ1 āĻĨā§āĻā§ āĻļā§āϰā§)1+2+3+4+......+n āĻšāϞ⧠āĻāϰā§āĻĒ āϧāĻžāϰāĻžāϰ āϏāĻŽāώā§āĻāĻŋ= [n(n+1)/2]
n=āĻļā§āώ āϏāĻāĻā§āϝāĻž āĻŦāĻž āĻĒāĻĻ āϏāĻāĻā§āϝāĻž s=āϝā§āĻāĻĢāϞ
đŠ āĻĒā§āϰāĻļā§āύāĻ 1+2+3+....+100 =?
đ āϏāĻŽāĻžāϧāĻžāύāĻ[n(n+1)/2]
= [100(100+1)/2]
= 5050
đŠâ
āϏāĻŽāĻžāύā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻŦāϰā§āĻ āϝā§āĻ āĻĒāĻĻā§āϧāϤāĻŋāϰ āĻā§āώā§āϤā§āϰā§,-
āĻĒā§āϰāĻĨāĻŽ n āĻĒāĻĻā§āϰ āĻŦāϰā§āĻā§āϰ āϏāĻŽāώā§āĻāĻŋ
S= [n(n+1)2n+1)/6]
(āϝāĻāύ 1² + 2²+ 3² + 4²........ +n²)
đŠāĻĒā§āϰāĻļā§āύāĻ(1² + 3²+ 5² + ....... +31²) āϏāĻŽāĻžāύ āĻāϤ?
đāϏāĻŽāĻžāϧāĻžāύāĻ S=[n(n+1)2n+1)/6]
= [31(31+1)2Ã31+1)/6]
=31
đŠâ
āϏāĻŽāĻžāύā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻāύāϝā§āĻ āĻĒāĻĻā§āϧāϤāĻŋāϰ āĻā§āώā§āϤā§āϰā§-
āĻĒā§āϰāĻĨāĻŽ n āĻĒāĻĻā§āϰ āĻāύā§āϰ āϏāĻŽāώā§āĻāĻŋ S= [n(n+1)/2]2
(āϝāĻāύ 1Âŗ+2Âŗ+3Âŗ+.............+nÂŗ)
đŠāĻĒā§āϰāĻļā§āύāĻ1Âŗ+2Âŗ+3Âŗ+4Âŗ+âĻâĻâĻâĻ+10Âŗ=?
đāϏāĻŽāĻžāϧāĻžāύāĻ [n(n+1)/2]2
= [10(10+1)/2]2
= 3025
_____________________________________________
đŠâ
āĻĒāĻĻ āϏāĻāĻā§āϝāĻž āĻ āĻĒāĻĻ āϏāĻāĻā§āϝāĻžāϰ āϏāĻŽāώā§āĻāĻŋ āύāĻŋāϰā§āύāϝāĻŧā§āϰ āĻā§āώā§āϤā§āϰā§āĻ
āĻĒāĻĻ āϏāĻāĻā§āϝāĻž N= [(āĻļā§āώ āĻĒāĻĻ â āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ)/āĻĒā§āϰāϤāĻŋ āĻĒāĻĻā§ āĻŦā§āĻĻā§āϧāĻŋ] +1
đŠāĻĒā§āϰāĻļā§āύāĻ5+10+15+âĻâĻâĻâĻ+50=?
đāϏāĻŽāĻžāϧāĻžāύāĻ āĻĒāĻĻāϏāĻāĻā§āϝāĻž = [(āĻļā§āώ āĻĒāĻĻ â āĻĒā§āϰāĻĨāĻŽāĻĒāĻĻ)/āĻĒā§āϰāϤāĻŋ āĻĒāĻĻā§ āĻŦā§āĻĻā§āϧāĻŋ]+1
= [(50 â 5)/5] + 1
=10
āϏā§āϤāϰāĻžāĻ āĻĒāĻĻ āϏāĻāĻā§āϝāĻžāϰ āϏāĻŽāώā§āĻāĻŋ
= [(5 + 50)/2] Ã10
= 275
đŠâ
n āϤāĻŽ āĻĒāĻĻ=a + (n-1)d
āĻāĻāĻžāύā§, n =āĻĒāĻĻāϏāĻāĻā§āϝāĻž, a = 1āĻŽ āĻĒāĻĻ, d= āϏāĻžāϧāĻžāϰāĻŖ āĻ
āύā§āϤāϰ
đŠāĻĒā§āϰāĻļā§āύāĻ 5+8+11+14+.......āϧāĻžāϰāĻžāĻāĻŋāϰ āĻā§āύ āĻĒāĻĻ 302?
đ āϏāĻŽāĻžāϧāĻžāύāĻ āϧāϰāĻŋ, n āϤāĻŽ āĻĒāĻĻ =302
āĻŦāĻž, a + (n-1)d=302
āĻŦāĻž, 5+(n-1)3 =302
āĻŦāĻž, 3n=300
āĻŦāĻž, n=100
đŠāϏāĻŽāĻžāύā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻā§āϰāĻŽāĻŋāĻ āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻžāϰ āϝā§āĻāĻĢāϞ-S=M² āĻāĻāĻžāύā§,M=āĻŽāϧā§āϝā§āĻŽāĻž=(1āĻŽ āϏāĻāĻā§āϝāĻž+āĻļā§āώ āϏāĻāĻā§āϝāĻž)/2
đŠāĻĒā§āϰāĻļā§āύāĻ1+3+5+.......+19=āĻāϤ?
đ āϏāĻŽāĻžāϧāĻžāύāĻ S=M²
={(1+19)/2}²
=(20/2)²
=100
_____________________________________________
âđŠ āĻŦāϰā§āĻđ
(1)²=1,(11)²=121,(111)²=12321,(1111)²=1234321,(11111)²=123454321
đŠđāύāĻŋāϝāĻŧāĻŽ-āϝāϤāĻā§āϞ⧠1 āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āύāĻŋāϝāĻŧā§ āĻŦāϰā§āĻ āĻāϰāĻž āĻšāĻŦā§, āĻŦāϰā§āĻ āĻĢāϞ⧠1 āĻĨā§āĻā§ āĻļā§āϰ⧠āĻāϰ⧠āĻĒāϰ āĻĒāϰ āϏā§āĻ āϏāĻāĻā§āϝāĻž āĻĒāϰā§āϝāύā§āϤ āϞāĻŋāĻāϤ⧠āĻšāĻŦā§ āĻāĻŦāĻ āϤāĻžāϰāĻĒāϰ āϏā§āĻ āϏāĻāĻā§āϝāĻžāϰ āĻĒāϰ āĻĨā§āĻā§ āĻ
āϧāĻāĻā§āϰāĻŽā§ āĻĒāϰāĻĒāϰ āϏāĻāĻā§āϝāĻžāĻā§āϞ⧠āϞāĻŋāĻā§ 1 āϏāĻāĻā§āϝāĻžāϝāĻŧ āĻļā§āώ āĻāϰāϤ⧠āĻšāĻŦā§āĨ¤
đŠ(3)²=9,(33)²=1089,(333)²=110889,(3333)²=11108889,(33333)²=1111088889
đāϝāϤāĻā§āϞāĻŋ 3 āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āύāĻŋāϝāĻŧā§ āĻŦāϰā§āĻ āĻāϰāĻž āĻšāĻŦā§, āĻŦāϰā§āĻ āĻĢāϞ⧠āĻāĻāĻā§āϰ āĻāϰ⧠9 āĻāĻŦāĻ 9 āĻāϰ āĻŦāĻžāĻāĻĻāĻŋāĻā§ āϤāĻžāϰ āĻā§āϝāĻŧā§ (āϝāϤāĻā§āϞ⧠3 āĻĨāĻžāĻāĻŦā§) āĻāĻāĻāĻŋ āĻāĻŽ āϏāĻāĻā§āϝāĻ 8, āϤāĻžāϰ āĻĒāϰ āĻŦāĻžāĻāĻĻāĻŋāĻā§ āĻāĻāĻāĻŋ 0 āĻāĻŦāĻ āĻŦāĻžāĻāĻĻāĻŋāĻā§ 8 āĻāϰ āϏāĻŽāϏāĻāĻā§āϝāĻ 1 āĻŦāϏāĻŦā§āĨ¤
đŠ(6)²=36,(66)²=4356,(666)²=443556,(6666)²=44435556,(66666)²=4444355556
đāϝāϤāĻā§āϞāĻŋ 6 āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āύāĻŋāϝāĻŧā§ āĻŦāϰā§āĻ āĻāϰāĻž āĻšāĻŦā§, āĻŦāϰā§āĻ āĻĢāϞ⧠āĻāĻāĻā§āϰ āĻāϰ⧠6 āĻāĻŦāĻ 6 āĻāϰ āĻŦāĻžāĻāĻĻāĻŋāĻā§ āϤāĻžāϰ āĻā§āϝāĻŧā§ (āϝāϤāĻā§āϞ⧠6 āĻĨāĻžāĻāĻŦā§) āĻāĻāĻāĻŋ āĻāĻŽ āϏāĻāĻā§āϝāĻ 5, āϤāĻžāϰ āĻĒāϰ āĻŦāĻžāĻāĻĻāĻŋāĻā§ āĻāĻāĻāĻŋ 3 āĻāĻŦāĻ āĻŦāĻžāĻāĻĻāĻŋāĻā§ 5 āĻāϰ āϏāĻŽāϏāĻāĻā§āϝāĻ 4 āĻŦāϏāĻŦā§āĨ¤
đŠ(9)²=81,(99)²=9801,(999)²=998001,(9999)²=99980001,(99999)²=9999800001
đāϝāϤāĻā§āϞāĻŋ 9 āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āύāĻŋāϝāĻŧā§ āĻŦāϰā§āĻ āĻāϰāĻž āĻšāĻŦā§, āĻŦāϰā§āĻ āĻĢāϞ⧠āĻāĻāĻā§āϰ āĻāϰ⧠1 āĻāĻŦāĻ 1 āĻāϰ āĻŦāĻžāĻāĻĻāĻŋāĻā§ āϤāĻžāϰ āĻā§āϝāĻŧā§ (āϝāϤāĻā§āϞ⧠9 āĻĨāĻžāĻāĻŦā§) āĻāĻāĻāĻŋ āĻāĻŽ āϏāĻāĻā§āϝāĻ 0, āϤāĻžāϰ āĻĒāϰ āĻŦāĻžāĻāĻĻāĻŋāĻā§ āĻāĻāĻāĻŋ 8 āĻāĻŦāĻ āĻŦāĻžāĻāĻĻāĻŋāĻā§ 0 āĻāϰ āϏāĻŽāϏāĻāĻā§āϝāĻ 9 āĻŦāϏāĻŦā§āĨ¤
_____________________________________________
âđŖī¸đāĻāύāĻâ Father
1)Numerology (āϏāĻāĻā§āϝāĻžāϤāϤā§āϤā§āĻŦ)- Pythagoras(āĻĒāĻŋāĻĨāĻžāĻā§āϰāĻžāϏ)
2) Geometry(āĻā§āϝāĻžāĻŽāĻŋāϤāĻŋ)- Euclid(āĻāĻāĻā§āϞāĻŋāĻĄ)
3) Calculus(āĻā§āϝāĻžāϞāĻā§āϞāĻžāϏ)- Newton(āύāĻŋāĻāĻāύ)
4) Matrix(āĻŽā§āϝāĻžāĻā§āϰāĻŋāĻā§āϏ) - Arthur Cayley(āĻ
āϰā§āĻĨāĻžāϰ āĻā§āϝāĻžāϞā§)
5)Trigonometry(āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋ)Hipparchus(āĻšāĻŋāĻĒā§āĻĒāĻžāϰāĻāĻžāϏ)
6) Asthmatic(āĻĒāĻžāĻāĻŋāĻāĻŖāĻŋāϤ) Brahmagupta(āĻŦā§āϰāĻšā§āĻŽāĻā§āĻĒā§āϤ)
7) Algebra(āĻŦā§āĻāĻāĻŖāĻŋāϤ)- Muhammad ibn Musa al-Khwarizmi(āĻŽāĻžā§āĻšāĻžāĻŽā§āĻŽāĻĻ āĻŽā§āϏāĻž āĻāϞ āĻāĻžāϰāĻŋāĻāĻŽā§)
đ Logarithm(āϞāĻāĻžāϰāĻŋāĻĻāĻŽ)- John Napier(āĻāύ āύā§āĻĒāĻŋāϝāĻŧāĻžāϰ)
9) Set theory(āϏā§āĻ āϤāϤā§āϤā§āĻŦ)- George Cantor(āĻāϰā§āĻ āĻā§āϝāĻžāύā§āĻāϰ)
10) Zero(āĻļā§āύā§āϝ)- Brahmagupta(āĻŦā§āϰāĻšā§āĻŽāĻā§āĻĒā§āϤ)
_____________________________________________
đâđāĻ
āĻā§āĻā§āϰ āĻāĻāϰā§āĻāĻŋ āĻļāĻŦā§āĻĻ
āĻĒāĻžāĻāĻŋāĻāĻŖāĻŋāϤ āĻ āĻĒāϰāĻŋāĻŽāĻŋāϤāĻŋ
āĻ
āĻā§āĻ-Digit, āĻ
āύā§āĻĒāĻžāϤ-Ratio, āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻžâPrime number, āĻĒā§āϰā§āĻŖāĻŦāϰā§āĻ-Perfect square,āĻā§āĻĒāĻžāĻĻāĻ-Factor,āĻā§āϰāĻŽāĻŋāĻ āϏāĻŽāĻžāύā§āĻĒāĻžāϤā§âContinued proportion, āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ -Cost price, āĻā§āώāϤāĻŋ-Loss, āĻāĻĄāĻŧ-Average, āĻāϤāĻŋāĻŦā§āĻ-Velocity, āĻā§āĻŖāĻĢāϞ-Product, āĻ,āϏāĻž,āĻā§-Highest Common Factor, āĻāĻžāϤ-Power, āĻāύāĻŽā§āϞâCube root, āĻāύāĻ-Cube, āĻāύāĻĢāϞ-Volume, āĻĒā§āϰā§āύāϏāĻāĻā§āϝāĻž-Integer, āĻāĻžāĻĒ-Arc, āĻā§āĻ-Cylinder, āĻā§āϝāĻž-Chord, āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž-Even number, āϧā§āϰā§āĻŦāĻ-Constant, āĻĒāϰāĻŋāϏā§āĻŽāĻž-Perimeter, āĻŦāĻžāϏā§āϤāĻŦ-Real, āĻŦāϰā§āĻāĻŽā§āϞ-Square root, āĻŦā§āϝāϏā§āϤ āĻ
āύā§āĻĒāĻžāϤâInverse ratio, āĻŦāĻŋāĻā§āĻĄāĻŧāϏāĻāĻā§āϝāĻžâOdd number, āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ -Selling price, āĻŦā§āĻāĻāĻŖāĻŋāϤâAlgebra, āĻŽā§āϞāĻĻ Rational, āĻŽāϧā§āϝ āϏāĻŽāĻžāύā§āĻĒāĻžāϤ⧠-Mean proportional, āϝāĻžā§āĻāĻĢāϞ=Sum
āϞ,āϏāĻž,āĻā§-Lowest Common Multiple, āϞāĻŦ-Numerator, āĻļāϤāĻāϰāĻž-Percentage, āϏāĻŽāĻžāύā§āĻĒāĻžāϤ-Proportion, āϏāĻŽāĻžāύā§āĻĒāĻžāϤā§-Proportional, āϏā§āĻĻ-Interest, āĻšāϰ-Denominator,
_____________________________________________
â¤ī¸āĻā§āϝāĻžāĻŽāĻŋāϤāĻŋ
āĻ
āϤāĻŋāĻā§āĻâHypotenuse, āĻ
āύā§āϤāĻāĻā§āĻŖ-Internal angle, āĻ
āϰā§āϧāĻŦā§āϤā§āϤ-Semi-circle, āĻ
āύā§āϤ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ-In-radius, āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰ-Rectangle, āĻāĻā§āĻāϤāĻž-Height, āĻāϰā§āĻŖâDiagonal, āĻā§āĻŖ-Angle, āĻā§āύā§āĻĻā§āϰ-Centre, āĻāĻžā§āϞāĻ-Sphere, āĻāϤā§āϰā§āĻā§āĻ-Quadrilateral, āĻā§āĻ-Cylinder,āĻā§āϝāĻžāĻŽāĻŋāϤāĻŋ-Geometry,āĻĻā§āϰā§āĻā§āϝ-Length, āĻĒāĻā§āĻāĻā§āĻ -Pentagon, āĻĒā§āϰāϏā§āĻĨ-Breadth
āĻĒā§āϰāĻāĻā§āύ-Complementary angles, āĻŦāĻžāĻšā§-Side, āĻŦā§āϤā§āϤ-Circle, āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ-Radius, āĻŦā§āϝāĻžāϏ-Diameter, āĻŦāĻšā§āĻā§āĻ-Polygon, āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰâSquare, āĻŦāĻšāĻŋ:āϏā§āĻĨ External, āĻļāĻā§āĻā§-Cone, āϏāĻŽāĻā§āĻŖ-Right angle, āϏāĻŽāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻ-Equilateral triangle, āĻ
āϏāĻŽāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻâScalene triangle, āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻ-isosceles Triangle,āϏāĻŽāĻā§āĻŖā§ āϤā§āϰāĻŋāĻā§āĻ Right angled triangle, āϏā§āĻā§āώā§āĻŽāĻā§āĻŖā§-Acute angled triangle, āϏā§āĻĨā§āϞāĻā§āĻŖā§ āϤā§āϰāĻŋāĻā§āĻ Obtuse angled triangle, āϏāĻŽāĻžāύā§āϤāϰāĻžāϞâParallel, āϏāϰāϞāϰā§āĻāĻžâStraight line, āϏāĻŽā§āĻĒā§āϰāĻ āĻā§āĻŖâSupplementary angles, āϏāĻĻā§āĻļāĻā§āĻŖā§-Equiangular
_____________________________________________
đŠāϰā§āĻŽāĻžāύ āϏāĻāĻā§āϝāĻžâ Roman numerals )
1:I
2: II
3: III
4: IV
5: V
6: VI
7: VII
8: VIII
9: IX
10: X
11: XI
12: XII
13: XIII
14: XIV
15: XV
16: XVI
17: XVII
18: XVIII
19: XIX
20: XX
30: ###
40: XL
50: L
60: LX
70: LXX
80: L###
90: XC
100: C
200: CC
300: CCC
400: CD
500: D
600: DC
700: DCC
800: DCCC
900: CM
1000:M
_____________________________________________
âđŖī¸1. āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž + āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž = āĻā§āĻĄāĻŧ
āϏāĻāĻā§āϝāĻžāĨ¤
āϝā§āĻŽāύāĻ 2 + 6 = 8.
đŖī¸2. āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž + āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž =
āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻžāĨ¤
āϝā§āĻŽāύāĻ 6 + 7 = 13.
đŖī¸3. āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž + āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž =
āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻžāĨ¤
āϝā§āĻŽāύāĻ 3 + 5 = 8.
đŖī¸4. āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž à āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž = āĻā§āĻĄāĻŧ
āϏāĻāĻā§āϝāĻžāĨ¤
āϝā§āĻŽāύāĻ 6 à 8 = 48.
đŖī¸5.āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž à āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž = āĻā§āĻĄāĻŧ
āϏāĻāĻā§āϝāĻžāĨ¤
āϝā§āĻŽāύāĻ 6 à 7 = 42
đŖī¸6.āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž à āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž =
āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻžāĨ¤
āϝā§āĻŽāύāĻ 3 à 9 = 27
_____________________________________________
âđāĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āĻāĻžāĻĄāĻŧāĻž āϝ⧠āĻā§āύ āϏāĻāĻā§āϝāĻžāĻā§ āĻāĻžāĻ āĻāϰāĻžāϰ āĻāĻāĻāĻŋ effective āĻā§āĻāύāĻŋāĻ!
đ āĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āĻāĻžāĻĄāĻŧāĻž āϝ⧠āĻā§āύ āϏāĻāĻā§āϝāĻžāĻā§ 5 āĻĻāĻŋāϝāĻŧā§ āĻāĻžāĻ āĻāϰāĻžāϰ āĻāĻāĻāĻŋ effective āĻā§āĻāύāĻŋāĻ
1.đŠ 13/5= 2.6 (āĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āĻāĻžāĻĄāĻŧāĻž āĻŽāĻžāϤā§āϰ ā§Š āϏā§āĻā§āύā§āĻĄā§ āĻāĻāĻŋ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻž āϝāĻžāϝāĻŧ)
ââ
āĻā§āĻāύāĻŋāĻāĻ
5 āĻĻāĻŋāϝāĻŧā§ āϝ⧠āϏāĻāĻā§āϝāĻžāĻā§ āĻāĻžāĻ āĻāϰāĻŦā§āύ āϤāĻžāĻā§ 2 āĻĻāĻŋāϝāĻŧā§ āĻā§āĻŖ āĻāϰā§āύ āϤāĻžāϰāĻĒāϰ āĻĄāĻžāύāĻĻāĻŋāĻ āĻĨā§āĻā§ 1 āĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻŋāϝāĻŧā§ āĻĻāĻŋāύāĨ¤ āĻāĻžāĻ āĻļā§āώ!!! 13*2=26, āϤāĻžāϰāĻĒāϰ āĻĨā§āĻā§ 1 āĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻŋāϝāĻŧā§ āĻĻāĻŋāϞ⧠2.6 āĨ¤
2.đŠ 213/5=42.6 (213*2=426)
0.03/5= 0.006 (0.03*2=0.06 āϝāĻžāϰ āĻāĻāĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻžāϞ⧠āĻšāϝāĻŧ 0.006) 333,333,333/5= 66,666,666.6 (āĻāĻ āĻā§āϞāĻž āĻāϰāϤ⧠āĻāĻŦāĻžāϰ āĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āϞāĻžāĻā§ āύāĻž āĻāĻŋ!)
3.đŠ 12,121,212/5= 2,424,242.4
āĻāĻŦāĻžāϰ āύāĻŋāĻā§ āĻāĻā§āĻā§āĻŽāϤ 5 āĻĻāĻŋāϝāĻŧā§ āϝ⧠āĻā§āύ āϏāĻāĻā§āϝāĻžāĻā§ āĻāĻžāĻ āĻāϰ⧠āĻĻā§āĻā§āύ
đđ āĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āĻāĻžāĻĄāĻŧāĻž āϝ⧠āĻā§āύ āϏāĻāĻā§āϝāĻžāĻā§ 25 āĻĻāĻŋāϝāĻŧā§ āĻāĻžāĻ āĻāϰāĻžāϰ āĻāĻāĻāĻŋ effective āĻā§āĻāύāĻŋāĻ
1.đŠ 13/25=0.52 (āĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āĻāĻžāĻĄāĻŧāĻž āĻāĻāĻŋāĻ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻž āϝāĻžāϝāĻŧ)
ââ
āĻā§āĻāύāĻŋāĻāĻ
25 āĻĻāĻŋāϝāĻŧā§ āϝ⧠āϏāĻāĻā§āϝāĻžāĻā§ āĻāĻžāĻ āĻāϰāĻŦā§āύ āϤāĻžāĻā§ 4 āĻĻāĻŋāϝāĻŧā§ āĻā§āĻŖ āĻāϰā§āύ āϤāĻžāϰāĻĒāϰ āĻĄāĻžāύāĻĻāĻŋāĻ āĻĨā§āĻā§ 2 āĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻŋāϝāĻŧā§ āĻĻāĻŋāύāĨ¤ 13*4=52, āϤāĻžāϰāĻĒāϰ āĻĨā§āĻā§ 2 āĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻŋāϝāĻŧā§ āĻĻāĻŋāϞ⧠0.52 āĨ¤
02.đŠ 210/25 = 8.40
03.đŠ 0.03/25 = 0.0012
04.đŠ 222,222/25 = 8,888.88
05đŠ. 13,121,312/25 = 524,852.48
âđ āĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āĻāĻžāĻĄāĻŧāĻž āϝ⧠āĻā§āύ āϏāĻāĻā§āϝāĻžāĻā§ 125 āĻĻāĻŋāϝāĻŧā§ āĻāĻžāĻ āĻāϰāĻžāϰ āĻāĻāĻāĻŋ effective āĻā§āĻāύāĻŋāĻ
01.đŠ 7/125 = 0.056
ââ
āĻā§āĻāύāĻŋāĻāĻ
125 āĻĻāĻŋāϝāĻŧā§ āϝ⧠āϏāĻāĻā§āϝāĻžāĻā§ āĻāĻžāĻ āĻāϰāĻŦā§āύ āϤāĻžāĻā§ 8 āĻĻāĻŋāϝāĻŧā§ āĻā§āĻŖ āĻāϰā§āύ āϤāĻžāϰāĻĒāϰ āĻĄāĻžāύāĻĻāĻŋāĻ āĻĨā§āĻā§ 3 āĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻŋāϝāĻŧā§ āĻĻāĻŋāύāĨ¤ āĻāĻžāĻ āĻļā§āώ! 7*8=56, āϤāĻžāϰāĻĒāϰ āĻĨā§āĻā§ 3 āĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻŋāϝāĻŧā§ āĻĻāĻŋāϞ⧠0.056 āĨ¤
02.đŠ 111/125 = 0.888
03.đŠ 600/125 = 4.800
_____________________________________________
âđŖī¸đāĻāϏā§āύ āϏāĻšāĻā§ āĻāϰāĻŋ
āĻāĻĒāĻŋāĻāĻ 10 āϏā§āĻā§āύā§āĻĄā§ āĻŦāϰā§āĻāĻŽā§āϞ āύāĻŋāϰā§āĻŖāϝāĻŧāĨ¤
āĻŦāĻŋāĻāĻĻā§āϰāĻ āϝ⧠āϏāĻāĻā§āϝāĻžāĻā§āϞā§āϰ āĻŦāϰā§āĻāĻŽā§āϞ 1 āĻĨā§āĻā§ 99 āĻāϰ āĻŽāϧā§āϝ⧠āĻāĻ āĻĒāĻĻā§āϧāϤāĻŋāϤ⧠āϤāĻžāĻĻā§āϰ āĻŦā§āϰ āĻāϰāĻž āϝāĻžāĻŦā§ āĻā§āĻŦ āϏāĻšāĻā§āĻāĨ¤ āĻĒā§āϰāĻļā§āύ⧠āĻ
āĻŦāĻļā§āϝāĻ āĻĒā§āϰā§āĻŖāĻŦāϰā§āĻ āϏāĻāĻā§āϝāĻž āĻĨāĻžāĻāĻž āϞāĻžāĻāĻŦā§āĨ¤ āĻ
āϰā§āĻĨāĻžā§ āĻāϤā§āϤāϰ āϝāĻĻāĻŋ āĻĻāĻļāĻŽāĻŋāĻ āĻāĻā§āύāĻžāĻāĻļ āĻāϏ⧠āϤāĻŦā§ āĻāĻ āĻĒāĻĻā§āĻŦāϤāĻŋ āĻāĻžāĻā§ āĻāϏāĻŦā§āύāĻžāĨ¤
āĻ
āĻŦāĻļā§āϝāĻ āĻŽāύā§āϝā§āĻ āĻĻāĻŋāϝāĻŧā§ āĻĒāĻĄāĻŧāϤ⧠āĻšāĻŦā§ āĻāĻŦāĻ āĻĒā§āϰā§āϝāĻžāĻāĻāĻŋāϏ āĻāϰāϤ⧠āĻšāĻŦā§āĨ¤ āύāϝāĻŧāϤ āĻā§āϞ⧠āϝāĻžāĻŦā§āύāĨ¤
āϤāĻŦā§ āĻāϏā§āύ āĻļā§āϰ⧠āĻāϰāĻž āϝāĻžāĻāĨ¤ āĻļā§āϰā§āϤ⧠1 āĻĨā§āĻā§ 9 āĻĒāϰā§āϝāύā§āϤ āϏāĻāĻā§āϝāĻžāϰ āĻŦāϰā§āĻ āĻŽā§āĻāϏā§āĻĨ āĻāϰ⧠āύāĻŋāĻāĨ¤ āĻāĻļāĻž āĻāϰāĻŋ āĻāĻā§āϞ⧠āϏāĻŦāĻžāĻ āĻāĻžāύā§āύāĨ¤ āϏā§āĻŦāĻŋāϧāĻžāϰ āĻāύā§āϝ⧠āĻāĻŽāĻŋ āύāĻŋāĻā§ āϞāĻŋāĻā§ āĻĻāĻŋāĻā§āĻāĻŋ-
1 square = 1, 2 square = 4
3 square = 9, 4 square = 16
5 square = 25, 6 square = 36
7 square = 49, 8 square = 64
9 square = 81
āĻāĻāĻžāύ⧠āĻĒā§āϰāϤā§āϝā§āĻāĻāĻž āĻŦāϰā§āĻ āϏāĻāĻā§āϝāĻžāϰ āĻĻāĻŋāĻā§ āĻā§āϝāĻŧāĻžāϞ āĻāϰāϞ⧠āĻĻā§āĻāĻŦā§āύ, āϏāĻŦāĻžāϰ āĻļā§āώā§āϰ āĻ
āĻāĻāĻāĻŋāϰ āĻā§āώā§āϤā§āϰ⧠-
â
1 āĻāϰ 9 āĻāϰ āĻŦāϰā§āĻā§āϰ āĻļā§āώ āĻ
āĻāĻ āĻŽāĻŋāϞ āĻāĻā§ (1, 81)
â
2 āĻāϰ 8 āĻāϰ āĻŦāϰā§āĻā§āϰ āĻļā§āώ āĻ
āĻāĻ āĻŽāĻŋāϞ āĻāĻā§(4, 64)
â
3 āĻāϰ 7 āĻāϰ āĻŦāϰā§āĻā§āϰ āĻļā§āώ āĻ
āĻāĻ āĻŽāĻŋāϞ āĻāĻā§ (9, 49);
â
4 āĻāϰ 6 āĻāϰ āĻŦāϰā§āĻā§āϰ āĻļā§āώ āĻ
āĻāĻ āĻŽāĻŋāϞ āĻāĻā§(16, 36);
āĻāĻŦāĻ 5 āĻāĻāĻž frown emoticon
āĻāĻĻā§āĻĻā§āϰ āĻĒāϰā§āϝāύā§āϤ āĻŦā§āĻāϤ⧠āϝāĻĻāĻŋ āĻā§āύ āϏāĻŽāϏā§āϝāĻž āĻĨāĻžāĻā§ āϤāĻŦā§ āĻāĻŦāĻžāϰ āĻĒāĻĄāĻŧā§ āύāĻŋāύāĨ¤
đŖī¸āĻāĻĻāĻžāĻšāϰāĻŖ:- 576 āĻāϰ āĻŦāϰā§āĻāĻŽā§āϞ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰā§āύāĨ¤
đāĻĒā§āϰāĻĨāĻŽ āϧāĻžāĻĒāĻ āϝ⧠āϏāĻāĻā§āϝāĻžāϰ āĻŦāϰā§āĻāĻŽā§āϞ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāϤ⧠āĻšāĻŦā§ āϤāĻžāϰ āĻāĻāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻāĻāĻŋ āĻĻā§āĻāĻŦā§āύāĨ¤ āĻāĻā§āώā§āϤā§āϰ⧠āϤāĻž āĻšāĻā§āĻā§ '6' āĨ¤
đ āĻĻā§āĻŦāĻŋāϤā§āϝāĻŧ āϧāĻžāĻĒāĻ āĻāĻĒāϰā§āϰ āϞāĻŋāϏā§āĻ āĻĨā§āĻā§ āϏ⧠āϏāĻāĻā§āϝāĻžāϰ āĻŦāϰā§āĻā§āϰ āĻļā§āώ āĻ
āĻāĻ 6 āϤāĻžāĻĻā§āϰ āύāĻŋāĻŦā§āύāĨ¤ āĻāĻā§āώā§āϤā§āϰ⧠4 āĻāĻŦāĻ 6 āĨ¤ āĻāĻŦāĻžāϰ āĻŦāϞāĻŋ, āĻā§āϝāĻŧāĻžāϞ āĻāϰā§āύ- 4 āĻāĻŦāĻ 6 āĻāϰ āĻŦāϰā§āĻ āϝāĻĨāĻžāĻā§āϰāĻŽā§ 16 āĻāĻŦāĻ 36; āϝāĻžāĻĻā§āϰ āĻāĻāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ āĻāĻŋāύāĻž '6' āĨ¤ āĻŦā§āĻāϤ⧠āĻĒā§āϰā§āĻā§āύ? āύāĻž āĻŦā§āĻāϞ⧠āĻāĻŦāĻžāϰ āĻĒāĻĄāĻŧā§ āĻĻā§āĻā§āύāĨ¤
đ āϤā§āϤā§āϝāĻŧ āϧāĻžāĻĒāĻ 4 / 6 āϞāĻŋāĻā§ āϰāĻžāĻā§āύ āĻāĻžāϤāĻžāϝāĻŧāĨ¤ (āĻāĻŽāϰāĻž āĻāϤā§āϤāϰā§āϰ āĻāĻāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ āĻĒā§āϝāĻŧā§ āĻā§āĻāĻŋ, āϝāĻž āĻšāĻā§āĻā§ 4 āĻ
āĻĨāĻŦāĻž 6; āĻāĻŋāύā§āϤ⧠āĻā§āύāĻāĻž? āĻāϰ āĻāϤā§āϤāϰ āĻĒāĻžāĻŦā§āύ āĻ
āώā§āĻāĻŽ āϧāĻžāĻĒā§, āĻĒāĻĄāĻŧāϤ⧠āĻĨāĻžāĻā§āύ ...)
đ āĻāϤā§āϰā§āĻĨ āϧāĻžāĻĒāĻ āĻĒā§āϰāĻļā§āύā§āϰ āĻāĻāĻ āĻāϰ āĻĻāĻļāĻā§āϰ āĻ
āĻāĻ āĻŦāĻžāĻĻ āĻĻāĻŋāϝāĻŧā§ āĻŦāĻžāĻāĻŋ āĻ
āĻāĻā§āϰ āĻĻāĻŋāĻā§ āϤāĻžāĻāĻžāύāĨ¤ āĻāĻā§āώā§āϤā§āϰ⧠āĻāĻāĻŋ āĻšāĻā§āĻā§ 5 āĨ¤
đāĻĒāĻā§āĻāĻŽ āϧāĻžāĻĒāĻ āĻāĻĒāϰā§āϰ āϞāĻŋāϏā§āĻ āĻĨā§āĻā§ 5 āĻāϰ āĻāĻžāĻāĻžāĻāĻžāĻāĻŋ āϝ⧠āĻŦāϰā§āĻ āϏāĻāĻā§āϝāĻžāĻāĻŋ āĻāĻā§ āϤāĻžāϰ āĻŦāϰā§āĻāĻŽā§āϞāĻāĻž āύāĻŋāύāĨ¤ āĻāĻā§āώā§āϤā§āϰ⧠4, āϝāĻž āĻāĻŋāύāĻž 2 āĻāϰ āĻŦāϰā§āĻāĨ¤ (āĻāĻŽāϰāĻž āĻāϤā§āϤāϰā§āϰ āĻĻāĻļāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ āĻĒā§āϝāĻŧā§ āĻā§āĻāĻŋ, āϝāĻž āĻšāĻā§āĻā§ 2 )
đāώāώā§āĻ āϧāĻžāĻĒāĻ 2 āĻāϰ āϏāĻžāĻĨā§ āϤāĻžāϰ āĻĒāϰā§āϰ āϏāĻāĻā§āϝāĻž āĻā§āύ āĻāϰā§āύāĨ¤ āĻ
āϰā§āĻĨāĻžā§ 2*3=6
đāϏāĻĒā§āϤāĻŽ āϧāĻžāĻĒāĻ āĻāϤā§āϰā§āĻĨ āϧāĻžāĻĒā§ āĻĒāĻžāĻāϝāĻŧāĻž āϏāĻāĻā§āϝāĻžāĻāĻž (5) āώāώā§āĻ āϧāĻžāĻĒā§ āĻĒāĻžāĻāϝāĻŧāĻž āϏāĻāĻā§āϝāĻžāϰ (6) āĻā§āϝāĻŧā§ āĻā§āĻ āύāĻžāĻāĻŋ āĻŦāĻĄāĻŧ āĻĻā§āĻā§āύāĨ¤ āĻā§āĻ āĻšāϞ⧠āϤā§āϤā§āϝāĻŧ āϧāĻžāĻĒā§ āĻĒāĻžāĻāϝāĻŧāĻž āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻāĻāĻŋ āύā§āĻŦ, āĻŦāĻĄāĻŧ āĻšāϞ⧠āĻŦāĻĄāĻŧāĻāĻŋāĨ¤ (āĻŦā§āĻāϤ⧠āĻĒā§āϰā§āĻā§āύ? āύāϝāĻŧāϤ āĻāĻŦāĻžāϰ āĻĒāĻĄāĻŧā§āύ)
đāĻ
āώā§āĻāĻŽ āϧāĻžāĻĒāĻ āĻāĻŽāĻžāĻĻā§āϰ āĻāĻĻāĻžāĻšāϰāĻŖā§āϰ āĻā§āώā§āϤā§āϰ⧠5 āĻšāĻā§āĻā§ 6 āĻāϰ āĻā§āĻ, āϤāĻžāĻ āĻāĻŽāϰāĻž 4 / 6 āĻŽāϧā§āϝ⧠āĻā§āĻ āϏāĻāĻā§āϝāĻž āĻ
āϰā§āĻĨāĻžā§ 4 āύā§āĻŦāĨ¤
đāύāĻŦāĻŽ āϧāĻžāĻĒāĻ āĻŽāύ⧠āĻāĻā§, āĻĒāĻā§āĻāĻŽ āϧāĻžāĻĒā§ āĻĻāĻļāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ āĻĒā§āϝāĻŧā§āĻāĻŋāϞāĻžāĻŽ 2 āĻāĻŦāĻžāϰ āĻĒā§āϝāĻŧā§āĻāĻŋ āĻāĻāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ 4 āĨ¤ āϤāĻžāĻ āĻāϤā§āϤāϰ āĻšāĻŦā§ 24
āĻāĻ āĻŋāύ āĻŽāύ⧠āĻšāĻā§āĻā§? āĻāĻāĻĻāĻŽāĻ āύāĻž, āĻāϝāĻŧā§āĻāĻāĻž āĻĒā§āϰā§āϝāĻžāĻāĻāĻŋāϏ āĻāϰ⧠āĻĻā§āĻā§āύāĨ¤ āĻāĻŽāĻžāϰ āĻŽāϤ⧠āĻā§āĻŦ āĻŦā§āĻļāĻŋ āϏāĻŽāϝāĻŧ āϞāĻžāĻāĻžāϰ āĻāĻĨāĻž āύāĻžāĨ¤
đŖī¸āĻāĻĻāĻžāĻšāϰāĻŖ:- 4225 āĻāϰ āĻŦāϰā§āĻāĻŽā§āϞ āĻŦā§āϰ āĻāϰā§āύāĨ¤
āĻŽāύ⧠āĻāĻā§ 5 āϝ⧠āĻāĻāĻž āĻāĻŋāϞ? āϏ⧠āĻāĻāĻž āĻĨāĻžāĻāĻžāϝāĻŧ āĻāĻĒāύāĻžāϰ āĻāĻžāĻ āĻāĻŋāύā§āϤ⧠āĻ
āύā§āĻ āϏā§āĻāĻž āĻšāϝāĻŧā§ āĻā§āĻā§āĨ¤ āĻĻā§āĻā§āύ āĻā§āύ⧠āĻĒā§āϰāĻļā§āύā§āϰ āĻļā§āώ āĻ
āĻāĻ 5 āĻšāĻāϝāĻŧāĻžāϝāĻŧ āĻāϤā§āϤāϰā§āϰ āĻāĻāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ āĻšāĻŦā§ āĻ
āĻŦāĻļā§āϝāĻ 5 āĨ¤
- āĻĒā§āϰāĻļā§āύā§āϰ āĻāĻāĻ āĻ āĻĻāĻļāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ āĻŦāĻžāĻĻ āĻĻāĻŋāϝāĻŧā§ āĻĻāĻŋāϞ⧠āĻŦāĻžāĻāĻŋ āĻĨāĻžāĻā§ 42 āĨ¤
- 42 āĻāϰ āϏāĻŦāĻā§āϝāĻŧā§ āĻāĻžāĻā§āϰ āĻĒā§āϰā§āĻŖāĻŦāϰā§āĻ āϏāĻāĻā§āϝāĻž āĻšāĻā§āĻā§ 36, āϝāĻžāϰ āĻŦāϰā§āĻāĻŽā§āϞ āĻšāĻā§āĻā§ 6 āĨ¤ āϤāĻžāĻ āĻāϤā§āϤāϰ āĻšāĻā§āĻā§ 65
_____________________________________________
đ
âšī¸1. āĻĒāĻžāĻāĻ āĻ
āĻā§āĻā§āϰ āĻā§āώā§āĻĻā§āϰāϤāĻŽ āϏāĻāĻā§āϝāĻž āĻāĻŦāĻ āĻāĻžāϰ āĻ
āĻā§āĻā§āϰ āĻŦā§āĻšāϤā§āϤāĻŽ āϏāĻāĻā§āϝāĻžāϰ āĻ
āύā§āϤāϰ āĻāϤ?
āĻāĻ ā§§āĨ¤(ā§§ā§Ļā§Ļā§Ļā§Ļ-⧝⧝⧝⧝)
âšī¸2. ā§Ļ,ā§§,⧍ āĻāĻŦāĻ ā§Š āĻĻā§āĻŦāĻžāϰāĻž āĻāĻ āĻŋāϤ āĻāĻžāϰ āĻ
āĻā§āĻā§āϰ āĻŦā§āĻšāϤā§āϤāĻŽ āĻāĻŦāĻ āĻā§āώā§āĻĻā§āϰāϤāĻŽ āϏāĻāĻā§āϝāĻžāϰ āĻŦāĻŋāϝāĻŧā§āĻāĻĢāϞ-
āĻāĻ ā§¨ā§§ā§Žā§āĨ¤(ā§Šā§¨ā§§ā§Ļ-ā§§ā§Ļā§¨ā§Š)
âšī¸3.āϝāĻĻāĻŋ ā§§ āĻĨā§āĻā§ ā§§ā§Ļā§Ļ āĻĒāϰā§āϝāύā§āϤ āĻāĻŖāύāĻž āĻāϰāĻž āĻšāϝāĻŧ āϤāĻŦā§ āĻāϰ āĻŽāϧā§āϝ⧠āĻāϤāĻāĻŋ ā§Ģ āĻĒāĻžāĻŦā§āĨ¤
āĻāĻ ā§¨ā§ĻāĻāĻŋāĨ¤
*ā§§āĻĨā§āĻā§ ā§§ā§Ļā§Ļ āĻĒāϰā§āϝāύā§āϤ ā§Ļ=ā§§ā§§āĻāĻŋ
ā§§ āĻĨā§āĻā§ ā§§ā§Ļā§Ļ āĻĒāϰā§āϝāύā§āϤ ā§§=⧍⧧āĻāĻŋ
ā§§ āĻĨā§āĻā§ ā§§ā§Ļā§Ļ āĻĒāϰā§āϝāύā§āϤ ⧍āĻĨā§āĻ⧠⧝ āĻĒāϰā§āϝāύā§āϤ āĻ
āĻā§āĻāĻā§āϞ⧠āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāĻŦā§=⧍ā§ĻāĻāĻŋāĨ¤
âšī¸4. ā§ā§¨ āϏāĻāĻā§āϝāĻžāĻāĻŋāϰ āĻŽā§āĻ āĻāĻžāĻāĻ ?
āĻāĻ ā§§ā§¨āĻāĻŋ
*ā§ā§¨=ā§§Ãā§ā§¨=⧍Ãā§Šā§Ŧ=ā§ŠÃ⧍ā§Ē=ā§ĒÃā§§ā§Ž=ā§ŦÃ⧧⧍=ā§ŽÃ⧝
ā§ā§¨ āϏāĻāĻā§āϝāĻžāĻāĻŋ āĻāĻžāĻāĻ=ā§§,⧍,ā§Š,ā§Ē,ā§Ŧ,ā§Ž,⧝,⧧⧍,ā§§ā§Ž,⧍ā§Ē,ā§Šā§Ŧ,ā§ā§¨āĨ¤
âšī¸5. ā§§ āĻĨā§āĻā§ ā§§ā§Ļā§Ļ āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž āĻāϤāĻāĻŋ?
āĻāĻ ā§¨ā§ĢāĻāĻŋāĨ¤
âšī¸6. (ā§Ļ.ā§Ļā§§)^⧍ āĻāϰ āĻŽāĻžāύ āĻā§āύ āĻāĻā§āύāĻžāĻāĻļāĻāĻŋāϰ āϏāĻŽāĻžāύ
āĻāĻ ā§§/ā§§ā§Ļā§Ļā§Ļā§Ļ
*(ā§Ļ.ā§Ļā§§)^⧍=ā§Ļ.ā§Ļā§§Ãā§Ļ.ā§Ļā§§
=ā§Ļ.ā§Ļā§Ļā§Ļā§§
=ā§§/ā§§ā§Ļā§Ļā§Ļā§Ļ
âšī¸7. āĻĻā§āĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāϰ āϏāĻŽāώā§āĻāĻŋ ā§ā§Ļ āĻāĻŦāĻ āĻ
āύā§āϤāϰāĻĢāϞ ā§§ā§Ļ āĻšāϞ⧠āĻŦāĻĄāĻŧ āϏāĻāĻā§āϝāĻžāĻāĻŋ
āĻāĻ ā§Ēā§Ļ
*āĻŦāĻĄāĻŧ āϏāĻāĻā§āϝāĻžāĻāĻŋ=ā§ā§Ļ+ā§§ā§Ļ
=ā§Žā§ĻÃˇā§¨
=ā§Ēā§Ļ
âšī¸8. āĻāĻāĻāĻŋ āϏāĻāĻā§āϝāĻž ā§ā§Ē⧍ āĻĨā§āĻā§ āϝāϤ āĻŦāĻĄāĻŧ ā§Žā§Šā§Ļ āĻĨā§āĻā§ āϤāϤ āĻā§āĻāĨ¤ āϏāĻāĻā§āϝāĻžāĻāĻŋ āĻāϤ?
āĻāĻ ā§ā§Žā§Ŧ
*āύāĻŋāϰā§āĻŖāϝāĻŧā§ āϏāĻāĻā§āϝāĻž=ā§ā§Ē⧍+ā§Žā§Šā§Ļ
=ā§§ā§Ģā§ā§¨Ãˇā§¨
=ā§ā§Žā§Ŧ
âšī¸9.āĻĻā§āĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻŖāĻĢāϞ ā§§ā§Ģā§Šā§Ŧ āϏāĻāĻā§āϝāĻž āĻĻā§āĻāĻŋāϰ āϞ āϏāĻž āĻ⧠⧝ā§Ŧ āĻšāϞ⧠āĻ āϏāĻž āĻā§ āĻāϤ?
āĻāĻ ā§§ā§Ŧ
* āϞ āϏāĻž āĻā§ Ã āĻ āϏāĻž āĻā§ = āĻā§āύāĻĢāϞ
⧝ā§ŦÃāĻ āϏāĻž āĻā§ = ā§§ā§Ģā§Šā§Ŧ
āĻ āϏāĻž āĻā§ = ā§§ā§Ģā§Šā§ŦÃˇā§¯ā§Ŧ
=ā§§ā§Ŧ
âšī¸10. āĻ
āύā§āĻĒāĻžāϤ āĻāĻŋ?
āĻāĻ āĻāĻāĻāĻŋ āĻāĻā§āύāĻžāĻāĻļ
âšī¸11. ⧍ā§Ē āĻā§ ā§:ā§Ŧ āĻ
āύā§āĻĒāĻžāϤ⧠āĻŦā§āĻĻā§āϧāĻŋ āĻāϰāϞ⧠āύāϤā§āύ āϏāĻāĻā§āϝāĻž āĻšāĻŦā§?
āĻāĻ ā§¨ā§Ž
*āύāϤā§āύ āϏāĻāĻā§āϝāĻžÃˇā§¨ā§Ē=ā§/ā§Ŧ
āύāϤā§āύ āϏāĻāĻā§āϝāĻž =ā§Ã⧍ā§ĒÃˇā§Ŧ
=ā§Ãā§Ē
=ā§¨ā§Ž
âšī¸12. ā§§ āĻĨā§āĻā§ ā§Ē⧝ āĻĒāϰā§āϝāύā§āϤ āĻā§āϰāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻž āĻā§āϞā§āϰ āĻāĻĄāĻŧ āĻāϤ?
āĻāĻ ā§¨ā§Ģ
*āύāĻŋāϰā§āĻŖāϝāĻŧā§ āĻāĻĄāĻŧ=
āĻļā§āώāĻĒāĻĻ +āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻÃˇā§¨
ā§Ē⧝+ā§§=ā§Ģā§ĻÃˇā§¨=⧍ā§Ģ
âšī¸13.ā§§ āĻĨā§āĻ⧠⧝⧝ āĻĒāϰā§āϝāύā§āϤ āϏāĻāĻā§āϝāĻžāĻā§āϞā§āϰ āϏāĻŽāώā§āĻāĻŋ āĻāϤ?
āĻāĻ ā§Ē⧝ā§Ģā§Ļ
*āϏāĻŽāώā§āĻāĻŋ=n(n+ā§§)Ãˇā§¨
=⧝⧝(⧝⧝+ā§§)Ãˇā§¨
=⧝⧝Ãā§§ā§Ļā§ĻÃˇā§¨
=⧝⧝Ãā§Ģā§Ļ
=ā§Ē⧝ā§Ģā§Ļ
-----------------------------------------------------
đ1 āĻĢā§āĻ = 12 āĻāĻā§āĻāĻŋ
1 āĻāĻ = 3 āĻĢā§āĻ
1 āĻŽāĻžāĻāϞ = ā§§ā§ā§Ŧā§Ļ āĻāĻ
1 āĻŽāĻžāĻāϞ â 1.61 āĻāĻŋāϞā§āĻŽāĻŋāĻāĻžāϰ
1 āĻāĻā§āĻāĻŋ = 2.54 āϏā§āύā§āĻāĻŋāĻŽāĻŋāĻāĻžāϰ
1 āĻĢā§āĻ = 0.3048 āĻŽāĻŋāĻāĻžāϰ
1 āĻŽāĻŋāĻāĻžāϰ = 1,000 āĻŽāĻŋāϞāĻŋāĻŽāĻŋāĻāĻžāϰ
1 āĻŽāĻŋāĻāĻžāϰ = 100 āϏā§āύā§āĻāĻŋāĻŽāĻŋāĻāĻžāϰ
1 āĻāĻŋāϞā§āĻŽāĻŋāĻāĻžāϰ = 1,000 āĻŽāĻŋāĻāĻžāϰ
1 āĻāĻŋāϞā§āĻŽāĻŋāĻāĻžāϰ â 0.62 āĻŽāĻžāĻāϞ
đāĻā§āώā§āϤā§āϰāĻ
1 āĻŦāϰā§āĻ āĻĢā§āĻ = 144 āĻŦāϰā§āĻ āĻāĻā§āĻāĻŋ
1 āĻŦāϰā§āĻ āĻāĻ = 9 āĻŦāϰā§āĻ āĻĢā§āĻ
1 āĻāĻāϰ = 43560 āĻŦāϰā§āĻ āĻĢā§āĻ
đ āĻāϝāĻŧāϤāύāĻ
1 āϞāĻŋāĻāĻžāϰ â 0.264 āĻā§āϝāĻžāϞāύ
1 āĻāύ āĻĢā§āĻ = 1.728 āĻāύ āĻāĻā§āĻāĻŋ
1 āĻāύ āĻāĻ = 27 āĻāύ āĻĢā§āĻ
đ āĻāĻāύāĻ
1 āĻāĻāύā§āϏ â 28.350 āĻā§āϰāĻžāĻŽ
1 cvDÃ= 16 āĻāĻāύā§āϏ
1 cvDà â 453.592 āĻā§āϰāĻžāĻŽ
1 āĻāĻ āĻā§āϰāĻžāĻŽā§āϰ āĻāϰā§āĻāϏāĻšāϏā§āϰāĻžāĻāĻļ = 0.001āĻā§āϰāĻžāĻŽ
1 āĻāĻŋāϞā§āĻā§āϰāĻžāĻŽ = 1,000 āĻā§āϰāĻžāĻŽ
1 āĻāĻŋāϞā§āĻā§āϰāĻžāĻŽ â 2.2 āĻĒāĻžāĻāύā§āĻĄ
1 āĻāύ = 2,200 āĻĒāĻžāĻāύā§āĻĄ
đ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ, āĻŦāĻŋāϞāĻŋāϝāĻŧāύ, āĻā§āϰāĻŋāϞāĻŋāϝāĻŧāύ āĻšāĻŋāϏāĻžāĻŦ
ā§§ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļ āϞāĻā§āώ
ā§§ā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ āĻā§āĻāĻŋ
ā§§ā§Ļā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļ āĻā§āĻāĻŋ
ā§§,ā§Ļā§Ļā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļā§Ļ āĻā§āĻāĻŋ
āĻāĻŦāĻžāϰ,
ā§§,ā§Ļā§Ļā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ= ā§§ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ
ā§§ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļā§Ļ āĻā§āĻāĻŋ
ā§§ā§Ļ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ=ā§§,ā§Ļā§Ļā§Ļ āĻā§āĻāĻŋ
ā§§ā§Ļā§Ļ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļ,ā§Ļā§Ļā§Ļ āĻā§āĻāĻŋ
ā§§,ā§Ļā§Ļā§Ļ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ āϞāĻā§āώ āĻā§āĻāĻŋ
āĻāĻŦāĻžāϰ,
ā§§,ā§Ļā§Ļā§Ļ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ āĻā§āϰāĻŋāϞāĻŋāϝāĻŧāύ
ā§§ āĻā§āϰāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ āϞāĻā§āώ āĻā§āĻāĻŋ
ā§§ā§Ļ āĻā§āϰāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļ āϞāĻā§āώ āĻā§āĻāĻŋ
ā§§ā§Ļā§Ļ āĻā§āϰāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļā§Ļ āϞāĻā§āώ āĻā§āĻāĻŋ
ā§§,ā§Ļā§Ļā§Ļ āĻā§āϰāĻŋāϞāĻŋāϝāĻŧāύ=ā§§,ā§Ļā§Ļā§Ļ āϞāĻā§āώ āĻā§āĻāĻŋāĨ¤
-----------------------------
ā§§ āϰāĻŋāĻŽ = ⧍ā§Ļ āĻĻāĻŋāϏā§āϤāĻž = ā§Ģā§Ļā§Ļ āϤāĻž
ā§§ āĻāϰāĻŋ = ā§§ā§Ŧ āĻāύāĻž ;
ā§§ āĻāύāĻž = ā§Ŧ āϰāϤāĻŋ
ā§§ āĻāĻ = ā§Š āĻĢā§āĻ = ⧍ āĻšāĻžāϤ
ā§§ āĻā§āĻāĻŋ = ā§§ā§Ļā§Ļā§Ļ āĻā§āϰāĻžāĻŽ
ā§§ āĻā§āĻāύā§āĻāĻžāϞ = ā§§ā§Ļā§Ļ āĻā§āĻāĻŋ
ā§§ āĻŽā§āĻā§āϰāĻŋāĻ āĻāύ = ā§§ā§Ļ āĻā§āĻāύā§āĻāĻžāϞ = ā§§ā§Ļā§Ļā§Ļ āĻā§āĻāĻŋ
ā§§ āϞāĻŋāĻāĻžāϰ = ā§§ā§Ļā§Ļā§Ļ āϏāĻŋāϏāĻŋ
ā§§ āĻŽāĻŖ = ā§Ēā§Ļ āϏā§āϰ
ā§§ āĻŦāĻŋāĻāĻž = ⧍ā§Ļ āĻāĻžāĻ āĻž( ā§Šā§Š āĻļāϤāĻžāĻāĻļ) ;
ā§§ āĻāĻžāĻ āĻž = ā§ā§¨ā§Ļ āĻŦāϰā§āĻāĻĢā§āĻ (ā§Žā§Ļ āĻŦāϰā§āĻ āĻāĻ)
1 āĻŽāĻŋāϞāĻŋāϝāĻŧāύ = 10 āϞāĻā§āώ
1 āĻŽāĻžāĻāϞ = 1.61 āĻāĻŋ.āĻŽāĻŋ ;
1 āĻāĻŋ.āĻŽāĻŋ. = 0..62
1 āĻāĻā§āĻāĻŋ = 2.54 āϏā§.āĻŽāĻŋ ;
1 āĻŽāĻŋāĻāĻžāϰ = 39.37 āĻāĻā§āĻāĻŋ
1 āĻā§.āĻāĻŋ = 2.20 āĻĒāĻžāĻāύā§āĻĄ ;
1 āϏā§āϰ = 0.93 āĻāĻŋāϞā§āĻā§āϰāĻžāĻŽ
1 āĻŽā§. āĻāύ = 1000 āĻāĻŋāϞā§āĻā§āϰāĻžāĻŽ ;
1 āĻĒāĻžāĻāύā§āĻĄ = 16 āĻāĻāύā§āϏ
1 āĻāĻ= 3 āĻĢā§āĻ ;
1 āĻāĻāϰ = 100 āĻļāϤāĻ
1 āĻŦāϰā§āĻ āĻāĻŋ.āĻŽāĻŋ.= 247 āĻāĻāϰ
āĻĒā§āϰāĻļā§āύāĻ ā§§ āĻāĻŋāĻŽāĻŋ āϏāĻŽāĻžāύ āĻāϤ āĻŽāĻžāĻāϞ ?
āĻāϤā§āϤāϰāĻ ā§Ļ.ā§Ŧ⧍ āĻŽāĻžāĻāϞāĨ¤
āĻĒā§āϰāĻļā§āύāĻ ā§§ āύā§āĻāĻŋāĻā§āϝāĻžāϞ āĻŽāĻžāĻāϞ⧠āĻāϤ āĻŽāĻŋāĻāĻžāϰ ?
āĻāϤā§āϤāϰāĻ ā§§ā§Žā§Ģā§Š.ā§¨ā§Ž āĻŽāĻŋāĻāĻžāϰāĨ¤
āĻĒā§āϰāĻļā§āύāĻ āϏāĻŽā§āĻĻā§āϰā§āϰ āĻāϞā§āϰ āĻāĻā§āϰāϤāĻž āĻŽāĻžāĻĒāĻžāϰ
āĻāĻāĻ ?
āĻāϤā§āϤāϰāĻ āĻĢā§āϝāĻžāĻĻāĻŽāĨ¤
āĻĒā§āϰāĻļā§āύāĻ ā§§.ā§Ģ āĻāĻā§āĻāĻŋ ā§§ āĻĢā§āĻā§āϰ āĻāϤ āĻ
āĻāĻļ?
āĻāϤā§āϤāϰāĻ ā§§/ā§Ž āĻ
āĻāĻļāĨ¤
ā§§āĻŽāĻžāĻāϞ =ā§§ā§ā§Ŧā§Ļ āĻāĻāĨ¤]
āĻĒā§āϰāĻļā§āύāĻ āĻāĻ āĻŦāϰā§āĻ āĻāĻŋāϞā§āĻŽāĻŋāĻāĻžāϰ āĻāϤ āĻāĻāϰ?
āĻāϤā§āϤāϰāĻ ā§¨ā§Ēā§ āĻāĻāϰāĨ¤
āĻĒā§āϰāĻļā§āύāĻ āĻāĻāĻāĻŋ āĻāĻŽāĻŋāϰ āĻĒāϰāĻŋāĻŽāĻžāύ ā§Ģ āĻāĻžāĻ āĻž āĻšāϞā§,
āϤāĻž āĻāϤ āĻŦāϰā§āĻāĻĢā§āĻ āĻšāĻŦā§?
āĻāϤā§āϤāϰāĻ ā§Šā§Ŧā§Ļā§Ļ āĻŦāϰā§āĻāĻĢā§āĻāĨ¤
āĻĒā§āϰāĻļā§āύāĻ āĻāĻ āĻŦāϰā§āĻ āĻāĻā§āĻāĻŋāϤ⧠āĻāϤ āĻŦāϰā§āĻ
āϏā§āύā§āĻāĻŋāĻŽāĻŋāĻāĻžāϰ?
āĻāϤā§āϤāϰāĻ ā§Ŧ.ā§Ēā§Ģ āϏā§āύā§āĻāĻŋāĻŽāĻŋāĻāĻžāϰāĨ¤
āĻĒā§āϰāĻļā§āύāĻ ā§§ āĻāύ āĻŽāĻŋāĻāĻžāϰ = āĻāϤ āϞāĻŋāĻāĻžāϰ?
āĻāϤā§āϤāϰāĻ ā§§ā§Ļā§Ļā§Ļ āϞāĻŋāĻāĻžāϰāĨ¤
āĻĒā§āϰāĻļā§āύāĻ āĻāĻ āĻā§āϝāĻžāϞāύ⧠āĻāϝāĻŧ āϞāĻŋāĻāĻžāϰ?
āĻāϤā§āϤāϰāĻ ā§Ē.ā§Ģā§Ģ āϞāĻŋāĻāĻžāϰāĨ¤
āĻĒā§āϰāĻļā§āύāĻ ā§§ āϏā§āϰ āϏāĻŽāĻžāύ āĻāϤ āĻā§āĻāĻŋ?
āĻāϤā§āϤāϰāĻ ā§Ļ.ā§¯ā§Š āĻā§āĻāĻŋāĨ¤
āĻĒā§āϰāĻļā§āύāĻ ā§§ āĻŽāĻŖā§ āĻāϤ āĻā§āĻāĻŋ?
āĻāϤā§āϤāϰāĻ ā§Šā§.ā§Šā§¨ āĻā§āĻāĻŋāĨ¤
āĻĒā§āϰāĻļā§āύāĻ ā§§ āĻāύ⧠āĻāϤ āĻā§āĻāĻŋ?
āĻāϤā§āϤāϰāĻ ā§§ā§Ļā§Ļā§Ļ āĻā§āĻāĻŋāĨ¤
āĻĒā§āϰāĻļā§āύāĻ ā§§ āĻā§āĻāĻŋāϤ⧠āĻāϤ āĻĒāĻžāĻāύā§āĻĄ??
āĻāϤā§āϤāϰāĻ ā§¨.⧍ā§Ļā§Ē āĻĒāĻžāĻāύā§āĻĄāĨ¤
āĻĒā§āϰāĻļā§āύāĻ ā§§ āĻā§āĻāύā§āĻāĻžāϞ⧠āĻāϤ āĻā§āĻāĻŋ?
āĻāϤā§āϤāϰāĻ ā§§ā§Ļā§ĻāĻā§āĻāĻŋāĨ¤
--------------------------------
đBritish & U.S British U.S
1 gallons = 4.5434 litres = 4.404
litres
2 gallons = 1 peck = 9.8070 litres
= 8.810 litres
-----------------------------------------
đāĻā§āϝāĻžāϰā§āĻ āĻāĻŋ?.
āĻāϤā§āϤāϰāĻ āĻŽā§āϞā§āϝāĻŦāĻžāύ āĻĒāĻžāĻĨāϰ āĻ āϧāĻžāϤā§āϏāĻžāĻŽāĻā§āϰā§
āĻĒāϰāĻŋāĻŽāĻžāĻĒā§āϰ āĻāĻāĻ āĻā§āϝāĻžāϰā§āĻ āĨ¤
1 āĻā§āϝāĻžāϰā§āĻ =0 .2 āĻā§āϰāĻžāĻŽ
đāĻŦā§āϞ āĻāĻŋ?
āĻāϤā§āϤāϰāĻ āĻĒāĻžāĻ āĻŦāĻž āϤā§āϞāĻž āĻĒāϰāĻŋāĻŽāĻžāĻĒā§āϰ āϏāĻŽāϝāĻŧ âāĻŦā§āϞâ
āĻāĻāĻ āĻšāĻŋāϏāĻžāĻŦā§ āĻŦā§āϝāĻŦāĻšā§āϤ āĻšāϝāĻŧ āĨ¤
1 āĻŦā§āϞ = 3.5 āĻŽāĻŖ (āĻĒā§āϰāĻžāϝāĻŧ) āĨ¤
(āϏāĻāĻā§āĻšā§āϤ)
āĻļā§āĻ āĻāĻžāĻŽāύāĻžā§: â¤ī¸