28/07/2025
Half-Yearly Examination, 2025-2026 for below stated subjects of classes III to VIII in all the Government Schools
Welcome to my page. In my page you will get inspiring, motivational Videos. DIY videos etc. For continuous update kindly Follow my page .Thank You đđđ
Half-Yearly Examination, 2025-2026 for below stated subjects of classes III to VIII in all the Government Schools
āϏāĻŦ āϝāĻāύ āĻŦāĻĻāϞ⧠āϝāĻžā§ ; āĻŦāĻĻāϞ āĻāύāϤ⧠āĻšā§ āĻŽāĻžāύāϏāĻŋāĻāϤāĻžā§ āĨĨ
âĻâĻâĻâĻâĻâĻâĻâĻâĻā§§ā§-ā§Ļā§-⧍ā§Ļ⧍ā§Ģ âĻâĻâĻâĻâĻâĻâĻâĻâĻ..
āϏāĻŽā§ā§āϰ āϏāĻžāĻĨā§ āĻŦāĻĻāϞ⧠āύāĻŋāϤ⧠āĻšā§ āύāĻŋāĻā§āĻĻā§āϰāĻ âĻāĻāĻŋāύā§āϤāĻžā§ āĻ āĻĒā§āϰā§ā§āĻā§ â āĻāϤāĻŋāĻŦāĻžāĻāĻāĻāĻžāĻŦā§ āĨĨ āϏā§āĻāĻžāĻ āϏāĻŽā§ā§āϰ āĻĻāĻžāĻŦā§ āĨĨ
âĻâĻâĻâĻâĻâĻâĻâĻāĻāϏā§āύ āϏ⧠āĻĒāĻĨā§ āĻāĻā§āĻ âĻâĻâĻâĻâĻâĻâĻ..
āĻāĻāĻāĻžāϞ āĻļā§āύāĻāĻŋ āϏāĻŽāĻžāĻā§āϰ āĻāϤāĻŋāĻĒā§ āĻļāĻŋāĻā§āώāĻŋāϤ āĻ
āĻāĻļā§āϰ āĻŦāĻĄā§āĻĄ āĻāώā§āĻ āĻšāĻā§āĻā§ !! āϏā§āϝāĻžāϰ âĻāĻļāĻŋāĻā§āώāĻžāĻā§āώā§āϤā§āϰā§āϰ āĻĢāĻžāĻāĻāĻā§āϞ⧠āĻļāĻŋāĻā§āώāĻ āĻšā§ā§ āĻĒā§āϰāĻāĻžāĻļā§āϝ⧠āϞāĻŋāĻāĻā§āύ -āĻŦāϞāĻā§āύ !
āϞāĻŋāĻāĻāĻŋ -āϞāĻŋāĻāĻŦā§-āϞā§āĻāĻžāϰ āĻĒā§āϰā§ā§āĻāύ -āϞāĻŋāĻāϤā§āĻ āĻšāĻŦā§ āĨĨ āĻāĻžāϰāύ , āĻāĻŽāϰāĻž āϝāĻžāϰāĻž āĻšāĻžāĻāĻžāϤ⧠āĻĒāϰāĻŋāĻŦāĻžāϰ āĻā§āϞ⧠āĻĨā§āĻā§ āĻĢāĻžāϰā§āϏā§āĻ āĻā§āύāĻžāϰā§āĻļāĻžāύ āϞāĻžāϰā§āύāĻžāϰ āĻšāĻŋāϏāĻžāĻŦā§ āĻ
āύā§āĻ āϞāĻĄāĻŧāĻžāĻ āϞāĻĄāĻŧāϤ⧠āϞāĻĄāĻŧāϤ⧠āϏāϰāĻāĻžāϰ⧠āĻļāĻŋāĻā§āώāĻžāϞā§āĻā§āϞāĻŋ āĻĨā§āĻā§ āĻļāĻŋāĻā§āώāĻž āĻ
āϰā§āĻāύ āĻāϰā§āĻāĻŋ , āĻā§āĻā§āϰ āϏāĻžāĻŽāύ⧠āϏā§āĻ āϏāϰāĻāĻžāϰ⧠āĻļāĻŋāĻā§āώāĻžāĻāĻž āĻā§āĻā§āĻā§ āĻĒāĻĄāĻŧāϤ⧠āĻĻā§āĻāϞ⧠āϝāύā§āϤā§āϰāύāĻž āĻšāĻŦā§ āĻŦā§āĻāĻŋ ! āĻāĻŽāĻžāĻĻā§āϰ āĻŽāϤ⧠āĻĒā§āϰāĻžāύā§āϤāĻŋāĻ āĻĒāϰāĻŋāĻŦāĻžāϰāĻā§āϞāĻŋāϰ āĻļāĻŋāĻļā§āϰāĻž āϝāĻžāĻŦā§ āĻā§āĻĨāĻžā§ âĻ
āϏāϰāĻāĻžāϰ⧠āĻļāĻŋāĻā§āώāĻžāϞā§āĻā§āϞ⧠āϝāĻāύ āĻĨāĻžāĻāĻŦā§ āύāĻž âĻâĻ!
āĻāĻāύāĻ āϏāĻŽā§ āĻāĻā§ -:: āĻāϏā§āύ āĻŦāĻĻāϞ⧠āύāĻŋāĻ āĨĨ
āϏāĻŽā§ā§āϰ āϏāĻžāĻĨā§ āĻŦāĻĻāϞ⧠āύāĻŋāϤ⧠āĻšā§ āύāĻŋāĻā§āĻĻā§āϰāĻ âĻāĻāĻŋāύā§āϤāĻžā§ āĻ āĻĒā§āϰā§ā§āĻā§ â āĻāϤāĻŋāĻŦāĻžāĻāĻāĻāĻžāĻŦā§ āĨĨ āϏā§āĻāĻžāĻ āϏāĻŽā§ā§āϰ āĻĻāĻžāĻŦā§ āĨĨ
@ āϏāĻŦ āϝāĻāύ āĻŦāĻĻāϞ⧠āϝāĻžā§ ; āĻŦāĻĻāϞ āĻāύāϤ⧠āĻšā§ āĻŽāĻžāύāϏāĻŋāĻāϤāĻžā§ āĨĨ
âĻâĻāϏāϰāĻāĻžāϰ⧠āĻļāĻŋāĻā§āώāĻž āĻŦāĻžāĻāĻāĻžāϤ⧠āĻĒāĻžāϰā§āύ āĻā§āĻŦāϞ āĻļāĻŋāĻā§āώāĻāϰāĻžāĻ âĻ.
ââââ-//////// āĻĒāĻžāϰāϤā§āĻ āĻšāĻŦā§ ////////ââââ-
āĻāĻŽāĻžāϰ āĻŦāĻŋāĻĻā§āϝāĻžāϞā§, āĻāĻāĻāĻŋ āĻĒāϰāĻŋāώā§āĻāĻžāϰ āĻāĻŦāĻ āĻĒāϰāĻŋāĻā§āĻāύā§āύ āĻŦāĻŋāĻĻā§āϝāĻžāϞā§
đāĻŦā§āĻāĻāĻžāĻŖāĻŋāϤāĻŋāĻ āϏā§āϤā§āϰāĻžāĻŦāϞā§đ
1.đŠ (a+b)²= a²+2ab+b²
2.đŠ (a+b)²= (a-b)²+4ab
3.đŠ (a-b)²= a²-2ab+b²
4.đŠ (a-b)²= (a+b)²-4ab
5.đŠ a² + b²= (a+b)²-2ab.
6.đŠ a² + b²= (a-b)²+2ab.
7.đŠ a²-b²= (a +b)(a -b)
8.đŠ 2(a²+b²)= (a+b)²+(a-b)²
9.đŠ 4ab = (a+b)²-(a-b)²
10.đŠ ab = {(a+b)/2}²-{(a-b)/2}²
11.đŠ (a+b+c)² = a²+b²+c²+2(ab+bc+ca)
12.đŠ (a+b)Âŗ = aÂŗ+3a²b+3ab²+bÂŗ
13.đŠ (a+b)Âŗ = aÂŗ+bÂŗ+3ab(a+b)
14.đŠ a-b)Âŗ= aÂŗ-3a²b+3ab²-bÂŗ
15.đŠ (a-b)Âŗ= aÂŗ-bÂŗ-3ab(a-b)
16.đŠ aÂŗ+bÂŗ= (a+b) (a²-ab+b²)
17.đŠ aÂŗ+bÂŗ= (a+b)Âŗ-3ab(a+b)
18.đŠ aÂŗ-bÂŗ = (a-b) (a²+ab+b²)
19.đŠ aÂŗ-bÂŗ = (a-b)Âŗ+3ab(a-b)
20. (a² + b² + c²) = (a + b + c)² â 2(ab + bc + ca)
21.đŠ 2 (ab + bc + ca) = (a + b + c)² â (a² + b² + c²)
22.đŠ (a + b + c)Âŗ = aÂŗ + bÂŗ + cÂŗ + 3 (a + b) (b + c) (c + a)
23.đŠ aÂŗ + bÂŗ + cÂŗ â 3abc =(a+b+c)(a² + b²+ c²âabâbcâ ca)
24.đŠ a3 + b3 + c3 â 3abc =ÂŊ (a+b+c) { (aâb)²+(bâc)²+(câa)²}
25.đŠ(x + a) (x + b) = x² + (a + b) x + ab
26.đŠ (x + a) (x â b) = x² + (a â b) x â ab
27.đŠ (x â a) (x + b) = x² + (b â a) x â ab
28.đŠ (x â a) (x â b) = x² â (a + b) x + ab
29.đŠ (x+p) (x+q) (x+r) = xÂŗ + (p+q+r) x² + (pq+qr+rp) x +pqr
30.đŠ bc (b-c) + ca (c- a) + ab (a - b) = - (b - c) (c- a) (a - b)
31.đŠ a² (b- c) + b² (c- a) + c² (a - b) = -(b-c) (c-a) (a - b)
32.đŠ a (b² - c²) + b (c² - a²) + c (a² - b²) = (b - c) (c- a) (a - b)
33.đŠ aÂŗ (b - c) + bÂŗ (c-a) +cÂŗ (a -b) =- (b-c) (c-a) (a - b)(a + b + c)
34.đŠ b²-c² (b²-c²) + c²a²(c²-a²)+a²b²(a²-b²)=-(b-c) (c-a) (a-b) (b+c) (c+a) (a+b)
35.đŠ (ab + bc+ca) (a+b+c) - abc = (a + b)(b + c) (c+a)
36.đŠ (b + c)(c + a)(a + b) + abc = (a + b +c) (ab + bc + ca)
_____________________________________________
đāĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰđ
1.āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = (āĻĻā§āϰā§āĻā§āϝ à āĻĒā§āϰāϏā§āĻĨ) āĻŦāϰā§āĻ āĻāĻāĻ
2.āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž = 2 (āĻĻā§āϰā§āĻā§āϝ+āĻĒā§āϰāϏā§āĻĨ)āĻāĻāĻ
3.āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰā§āϰ āĻāϰā§āĻŖ = â(āĻĻā§āϰā§āĻā§āĻ¯Â˛+āĻĒā§āϰāϏā§āĻĨ²)āĻāĻāĻ
4.āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰā§āϰ āĻĻā§āϰā§āĻā§āϝ= āĻā§āώā§āϤā§āϰāĻĢāĻ˛ÃˇāĻĒā§āϰāϏā§āϤ āĻāĻāĻ
5.āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰā§āϰ āĻĒā§āϰāϏā§āϤ= āĻā§āώā§āϤā§āϰāĻĢāĻ˛ÃˇāĻĻā§āϰā§āĻā§āϝ āĻāĻāĻ
_____________________________________________
đāĻŦāϰā§āĻāĻā§āώā§āϤā§āϰđ
1.āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = (āϝ⧠āĻā§āύ āĻāĻāĻāĻŋ āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝ)² āĻŦāϰā§āĻ āĻāĻāĻ
2.āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž = 4 à āĻāĻ āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝ āĻāĻāĻ
3.āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ āĻāϰā§āĻŖ=â2 à āĻāĻ āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝ āĻāĻāĻ
4.āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ āĻŦāĻžāĻšā§=âāĻā§āώā§āϤā§āϰāĻĢāϞ āĻŦāĻž āĻĒāϰāĻŋāϏā§āĻŽāĻžÃˇ4 āĻāĻ
_____________________________________________
âđŖī¸āϤā§āϰāĻŋāĻā§āĻđŠ
1.āϏāĻŽāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = âžÃ(āĻŦāĻžāĻšā§)²
2.āϏāĻŽāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻāĻā§āĻāϤāĻž = â3/2Ã(āĻŦāĻžāĻšā§)
3.āĻŦāĻŋāώāĻŽāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = âs(s-a) (s-b) (s-c)
āĻāĻāĻžāύ⧠a, b, c āϤā§āϰāĻŋāĻā§āĻā§āϰ āϤāĻŋāύāĻāĻŋ āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝ, s=āĻ
āϰā§āϧāĻĒāϰāĻŋāϏā§āĻŽāĻž
â
āĻĒāϰāĻŋāϏā§āĻŽāĻž 2s=(a+b+c)
4āϏāĻžāϧāĻžāϰāĻŖ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ
(āĻā§āĻŽāĻŋÃāĻāĻā§āĻāϤāĻž) āĻŦāϰā§āĻ āĻāĻāĻ
5.āϏāĻŽāĻā§āĻŖā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ(aÃb)
āĻāĻāĻžāύ⧠āϤā§āϰāĻŋāĻā§āĻā§āϰ āϏāĻŽāĻā§āĻŖ āϏāĻāϞāĻā§āύ āĻŦāĻžāĻšā§āĻĻā§āĻŦāϝāĻŧ a āĻāĻŦāĻ b.
6.āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2â4b²-a²/4 āĻāĻāĻžāύā§, a= āĻā§āĻŽāĻŋ; b= āĻ
āĻĒāϰ āĻŦāĻžāĻšā§āĨ¤
7.āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻāĻā§āĻāϤāĻž = 2(āĻā§āώā§āϤā§āϰāĻĢāϞ/āĻā§āĻŽāĻŋ)
8.āϏāĻŽāĻā§āĻŖā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻ
āϤāĻŋāĻā§āĻ =â āϞāĻŽā§āĻŦ²+āĻā§āĻŽāĻŋ²
9.āϞāĻŽā§āĻŦ =âāĻ
āϤāĻŋāĻā§āϲ-āĻā§āĻŽāĻŋ²
10.āĻā§āĻŽāĻŋ = âāĻ
āϤāĻŋāĻā§āϲ-āϞāĻŽā§āĻŦ²
11.āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻāĻā§āĻāϤāĻž = âb² - a²/4
āĻāĻāĻžāύ⧠a= āĻā§āĻŽāĻŋ; b= āϏāĻŽāĻžāύ āĻĻā§āĻ āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝāĨ¤
12.â
āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž=āϤāĻŋāύ āĻŦāĻžāĻšā§āϰ āϏāĻŽāώā§āĻāĻŋ
_____________________________________________
âđŖī¸āϰāĻŽā§āĻŦāϏđŠ
1.āϰāĻŽā§āĻŦāϏā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊà (āĻāϰā§āĻŖāĻĻā§āĻāĻāĻŋāϰ āĻā§āĻŖāĻĢāϞ)
2.āϰāĻŽā§āĻŦāϏā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž = 4à āĻāĻ āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝ
_____________________________________________âđŖī¸āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻđŠ
1.āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = āĻā§āĻŽāĻŋ à āĻāĻā§āĻāϤāĻž =
2.āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž = 2Ã(āϏāύā§āύāĻŋāĻšāĻŋāϤ āĻŦāĻžāĻšā§āĻĻā§āĻŦāϝāĻŧā§āϰ āϏāĻŽāώā§āĻāĻŋ)
_____________________________________________
âđŖī¸āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽđŠ
1. āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ =ÂŊÃ(āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āĻŦāĻžāĻšā§ āĻĻā§āĻāĻāĻŋāϰ āϝāĻžā§āĻāĻĢāϞ)ÃāĻāĻā§āĻāϤāĻž
_____________________________________________
âđŖī¸ āĻāύāĻđŠ
1.āĻāύāĻā§āϰ āĻāύāĻĢāϞ = (āϝā§āĻā§āύ āĻŦāĻžāĻšā§)Âŗ āĻāύ āĻāĻāĻ
2.āĻāύāĻā§āϰ āϏāĻŽāĻā§āϰāϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 6à āĻŦāĻžāĻšā§Â˛ āĻŦāϰā§āĻ āĻāĻāĻ
3.āĻāύāĻā§āϰ āĻāϰā§āĻŖ = â3ÃāĻŦāĻžāĻšā§ āĻāĻāĻ
_____________________________________________
âđŖī¸āĻāϝāĻŧāϤāĻāύāĻđŠ
1.āĻāϝāĻŧāϤāĻāύāĻā§āϰ āĻāύāĻĢāϞ = (āĻĻā§ā§°ā§āĻāĻžÃāĻĒā§āϰāϏā§āϤÃāĻāĻā§āĻāϤāĻž) āĻāύ āĻāĻāĻ
2.āĻāϝāĻŧāϤāĻāύāĻā§āϰ āϏāĻŽāĻā§āϰāϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2(ab + bc + ca) āĻŦāϰā§āĻ āĻāĻāĻ
[ āϝā§āĻāĻžāύ⧠a = āĻĻā§āϰā§āĻā§āϝ b = āĻĒā§āϰāϏā§āϤ c = āĻāĻā§āĻāϤāĻž ]
3.āĻāϝāĻŧāϤāĻāύāĻā§āϰ āĻāϰā§āĻŖ = âa²+b²+c² āĻāĻāĻ
4. āĻāĻžāϰāĻŋ āĻĻā§āĻāϝāĻŧāĻžāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2(āĻĻā§āϰā§āĻā§āϝ + āĻĒā§āϰāϏā§āĻĨ)ÃāĻāĻā§āĻāϤāĻž
_____________________________________________
âđŖī¸āĻŦā§āϤā§āϤđŠ
1.āĻŦā§āϤā§āϤā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = Īr²=22/7r² {āĻāĻāĻžāύ⧠Ī=āϧā§āϰā§āĻŦāĻ 22/7, āĻŦā§āϤā§āϤā§āϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ= r}
2. āĻŦā§āϤā§āϤā§āϰ āĻĒāϰāĻŋāϧāĻŋ = 2Īr
3. āĻā§āϞāĻā§āϰ āĻĒā§āώā§āĻ āϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 4Īr² āĻŦāϰā§āĻ āĻāĻāĻ
4. āĻā§āϞāĻā§āϰ āĻāϝāĻŧāϤāύ = 4ĪrÂŗÃˇ3 āĻāύ āĻāĻāĻ
5. h āĻāĻā§āĻāϤāĻžāϝāĻŧ āϤāϞāĻā§āĻā§āĻĻā§ āĻā§āĻĒāύā§āύ āĻŦā§āϤā§āϤā§āϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ = âr²-h² āĻāĻāĻ
6.āĻŦā§āϤā§āϤāĻāĻžāĻĒā§āϰ āĻĻā§āϰā§āĻā§āϝ s=Īrθ/180° ,
āĻāĻāĻžāĻ¨ā§ Î¸ =āĻā§āĻŖ
_____________________________________________
đŖī¸āϏāĻŽāĻŦā§āϤā§āϤāĻā§āĻŽāĻŋāĻ āϏāĻŋāϞāĻŋāύā§āĻĄāĻžāϰ / āĻŦā§āϞāύđŠ
āϏāĻŽāĻŦā§āϤā§āϤāĻā§āĻŽāĻŋāĻ āϏāĻŋāϞāĻŋāύā§āĻĄāĻžāϰā§āϰ āĻā§āĻŽāĻŋāϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ r āĻāĻŦāĻ āĻāĻā§āĻāϤāĻž h āĻāϰ āĻšā§āϞāĻžāύ⧠āϤāϞā§āϰ āĻāĻā§āĻāϤāĻž l āĻšāϞā§,
1.āϏāĻŋāϞāĻŋāύā§āĻĄāĻžāϰā§āϰ āĻāϝāĻŧāϤāύ = Īr²h
2.āϏāĻŋāϞāĻŋāύā§āĻĄāĻžāϰā§āϰ āĻŦāĻā§āϰāϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ (āϏāĻŋāĻāϏāĻ) = 2ĪrhāĨ¤
3.āϏāĻŋāϞāĻŋāύā§āĻĄāĻžāϰā§āϰ āĻĒā§āώā§āĻ āϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ (āĻāĻŋāĻāϏāĻ) = 2Īr (h + r)
_____________________________________________
đŖī¸āϏāĻŽāĻŦā§āϤā§āϤāĻā§āĻŽāĻŋāĻ āĻā§āĻŖāĻđŠ
āϏāĻŽāĻŦā§āϤā§āϤāĻā§āĻŽāĻŋāĻ āĻā§āĻŽāĻŋāϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ r āĻāĻŦāĻ āĻāĻā§āĻāϤāĻž h āĻāϰ āĻšā§āϞāĻžāύ⧠āϤāϞā§āϰ āĻāĻā§āĻāϤāĻž l āĻšāϞā§,
1.āĻā§āĻŖāĻā§āϰ āĻŦāĻā§āϰāϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ= Īrl āĻŦāϰā§āĻ āĻāĻāĻ
2.āĻā§āĻŖāĻā§āϰ āϏāĻŽāϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ= Īr(r+l) āĻŦāϰā§āĻ āĻāĻāĻ
3.āĻā§āĻŖāĻā§āϰ āĻāϝāĻŧāϤāύ= â
Īr²h āĻāύ āĻāĻāĻ
đŠâŽāĻŦāĻšā§āĻā§āĻā§āϰ āĻāϰā§āĻŖā§āϰ āϏāĻāĻā§āϝāĻž= n(n-3)/2
âŽāĻŦāĻšā§āĻā§āĻā§āϰ āĻā§āĻŖāĻā§āϞāĻŋāϰ āϏāĻŽāώā§āĻāĻŋ=(2n-4)āϏāĻŽāĻā§āĻŖ
āĻāĻāĻžāύ⧠n=āĻŦāĻžāĻšā§āϰ āϏāĻāĻā§āϝāĻž
â
āϏā§āώāĻŽ āĻŦāĻšā§āĻā§āĻ āĻāϰ āĻā§āώā§āϤā§āϰā§
āĻ
āύā§āϤāĻāĻā§āĻŖ + āĻŦāĻšāĻŋāĻāĻā§āĻŖ=180°
āĻŦāĻžāĻšā§ āϏāĻāĻā§āϝāĻž=360°/āĻŦāĻšāĻŋāĻ āĻā§āĻŖ
â
āĻāϤā§āϰā§āĻā§āĻā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž=āĻāĻžāϰ āĻŦāĻžāĻšā§āϰ āϏāĻŽāώā§āĻāĻŋ
_____________________________________________
đŖī¸āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāϰ āϏā§āϤā§āϰāĻžāĻŦāϞā§āĻđŠ
1. sinθ=⤞āĻŽā§āĻŦ/āĻ
āϤāĻŋāĻā§āĻ
2. cosθ=āĻā§āĻŽāĻŋ/āĻ
āϤāĻŋāĻā§āĻ
3. taneθ=⤞āĻŽā§āĻŦ/āĻā§āĻŽāĻŋ
4. cotθ=āĻā§āĻŽāĻŋ/āϞāĻŽā§āĻŦ
5. secθ=āĻ
āϤāĻŋāĻā§āĻ/āĻā§āĻŽāĻŋ
6. cosecθ=āĻ
āϤāĻŋāĻā§āĻ/āϞāĻŽā§āĻŦ
7. sinθ=1/cosecθ, cosecθ=1/sinθ
8. cosθ=1/secθ, secθ=1/cosθ
9. tanθ=1/cotθ, cotθ=1/tanθ
10. sin²θ + cos²θ= 1
11. sin²θ = 1 - cos²θ
12. cos²θ = 1- sin²θ
13. sec²θ - tan²θ = 1
14. sec²θ = 1+ tan²θ
15. tan²θ = sec²θ - 1
16, cosec²θ - cot²θ = 1
17. cosec²θ = cot²θ + 1
18. cot²θ = cosec²θ - 1
_____________________________________________
âđŖī¸ āĻŦāĻŋāϝāĻŧāĻžā§āĻā§āϰ āϏā§āϤā§āϰāĻžāĻŦāϞāĻŋđŠ
1. āĻŦāĻŋāϝāĻŧāĻžā§āĻāύ-āĻŦāĻŋāϝāĻŧā§āĻā§āϝ =āĻŦāĻŋāϝāĻŧā§āĻāĻĢāϞāĨ¤
2.āĻŦāĻŋāϝāĻŧāĻžā§āĻāύ=āĻŦāĻŋāϝāĻŧāĻžā§āĻāĻĢ + āĻŦāĻŋāϝāĻŧāĻžā§āĻā§āϝ
3.āĻŦāĻŋāϝāĻŧāĻžā§āĻā§āϝ=āĻŦāĻŋāϝāĻŧāĻžā§āĻāύ-āĻŦāĻŋāϝāĻŧāĻžā§āĻāĻĢāϞ
_____________________________________________
âđŖī¸ āĻā§āĻŖā§āϰ āϏā§āϤā§āϰāĻžāĻŦāϞāĻŋđŠ
1.āĻā§āĻŖāĻĢāϞ =āĻā§āĻŖā§āϝ à āĻā§āĻŖāĻ
2.āĻā§āĻŖāĻ = āĻā§āĻŖāĻĢāϞ Ãˇ āĻā§āĻŖā§āϝ
3.āĻā§āĻŖā§āϝ= āĻā§āĻŖāĻĢāϞ Ãˇ āĻā§āĻŖāĻ
_____________________________________________
âđŖī¸ āĻāĻžāĻā§āϰ āϏā§āϤā§āϰāĻžāĻŦāϞāĻŋđŠ
āύāĻŋāĻāĻļā§āώ⧠āĻŦāĻŋāĻāĻžāĻā§āϝ āύāĻž āĻšāϞā§āĨ¤
1.āĻāĻžāĻā§āϝ= āĻāĻžāĻāĻ Ã āĻāĻžāĻāĻĢāϞ + āĻāĻžāĻāĻļā§āώāĨ¤
2.āĻāĻžāĻāĻ= (āĻāĻžāĻā§āϝâ āĻāĻžāĻāĻļā§āώ) Ãˇ āĻāĻžāĻāĻĢāϞāĨ¤
3.āĻāĻžāĻāĻĢāϞ = (āĻāĻžāĻā§āϝ â āĻāĻžāĻāĻļā§āώ)Ãˇ āĻāĻžāĻāĻāĨ¤
*āύāĻŋāĻāĻļā§āώ⧠āĻŦāĻŋāĻāĻžāĻā§āϝ āĻšāϞā§āĨ¤
4.āĻāĻžāĻāĻ= āĻāĻžāĻā§āĻ¯Ãˇ āĻāĻžāĻāĻĢāϞāĨ¤
5.āĻāĻžāĻāĻĢāϞ = āĻāĻžāĻā§āϝ Ãˇ āĻāĻžāĻāĻāĨ¤
6.āĻāĻžāĻā§āϝ = āĻāĻžāĻāĻ Ã āĻāĻžāĻāĻĢāϞāĨ¤
_____________________________________________
âđŖī¸āĻāĻā§āύāĻžāĻāĻļā§āϰ āϞ.āϏāĻž.āĻā§ āĻ āĻ.āϏāĻž.āĻā§ āϏā§āϤā§āϰāĻžāĻŦāϞ⧠đŠ
1.āĻāĻā§āύāĻžāĻāĻļā§āϰ āĻ.āϏāĻž.āĻā§ = āϞāĻŦāĻā§āϞāĻžā§āϰ āĻ.āϏāĻž.āĻā§ / āĻšāϰāĻā§āϞāĻžā§āϰ āϞ.āϏāĻž.āĻā§
2.āĻāĻā§āύāĻžāĻāĻļā§āϰ āϞ.āϏāĻž.āĻā§ =āϞāĻŦāĻā§āϞāĻžā§āϰ āϞ.āϏāĻž.āĻā§ /āĻšāϰāĻā§āϞāĻžāϰ āĻ.āϏāĻž.āĻā§
3.āĻāĻā§āύāĻžāĻāĻļāĻĻā§āĻŦāϝāĻŧā§āϰ āĻā§āĻŖāĻĢāϞ = āĻāĻā§āύāĻžāĻāĻļāĻĻā§āĻŦāϝāĻŧā§āϰ āϞ.āϏāĻž.āĻā§ Ã āĻāĻā§āύāĻžāĻāĻļāĻĻā§āĻŦāϝāĻŧā§āϰ āĻ.āϏāĻž.āĻā§.
_____________________________________________
đŖī¸āĻāĻĄāĻŧ āύāĻŋāϰā§āĻŖāϝāĻŧ đŠ
1.āĻāĻĄāĻŧ = āϰāĻžāĻļāĻŋ āϏāĻŽāώā§āĻāĻŋ /āϰāĻžāĻļāĻŋ āϏāĻāĻā§āϝāĻž
2.āϰāĻžāĻļāĻŋāϰ āϏāĻŽāώā§āĻāĻŋ = āĻāĻĄāĻŧ ÃāϰāĻžāĻļāĻŋāϰ āϏāĻāĻā§āϝāĻž
3.āϰāĻžāĻļāĻŋāϰ āϏāĻāĻā§āϝāĻž = āϰāĻžāĻļāĻŋāϰ āϏāĻŽāώā§āĻāĻŋ Ãˇ āĻāĻĄāĻŧ
4.āĻāϝāĻŧā§āϰ āĻāĻĄāĻŧ = āĻŽāĻžā§āĻ āĻāϝāĻŧā§āϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖ / āĻŽāĻžā§āĻ āϞāĻžā§āĻā§āϰ āϏāĻāĻā§āϝāĻž
5.āϏāĻāĻā§āϝāĻžāϰ āĻāĻĄāĻŧ = āϏāĻāĻā§āϝāĻžāĻā§āϞāĻžā§āϰ āϝāĻžā§āĻāĻĢāϞ /āϏāĻāĻā§āϝāĻžāϰ āĻĒāϰāĻŋāĻŽāĻžāύ āĻŦāĻž āϏāĻāĻā§āϝāĻž
6.āĻā§āϰāĻŽāĻŋāĻ āϧāĻžāϰāĻžāϰ āĻāĻĄāĻŧ =āĻļā§āώ āĻĒāĻĻ +ā§§āĻŽ āĻĒāĻĻ /2
_____________________________________________
âđŖī¸āϏā§āĻĻāĻāώāĻžāϰ āĻĒāϰāĻŋāĻŽāĻžāύ āύāĻŋāϰā§āύāϝāĻŧā§āϰ āϏā§āϤā§āϰāĻžāĻŦāϞā§đŠ
1. āϏā§āĻĻ = (āϏā§āĻĻā§āϰ āĻšāĻžāϰÃāĻāϏāϞÃāϏāĻŽāϝāĻŧ) Ãˇā§§ā§Ļā§Ļ
2. āϏāĻŽāϝāĻŧ = (100à āϏā§āĻĻ)Ãˇ (āĻāϏāϞÃāϏā§āĻĻā§āϰ āĻšāĻžāϰ)
3. āϏā§āĻĻā§āϰ āĻšāĻžāϰ = (100ÃāϏā§āĻĻ)Ãˇ(āĻāϏāϞÃāϏāĻŽāϝāĻŧ)
4. āĻāϏāϞ = (100ÃāϏā§āĻĻ)Ãˇ(āϏāĻŽāϝāĻŧÃāϏā§āĻĻā§āϰ āĻšāĻžāϰ)
5. āĻāϏāϞ = {100Ã(āϏā§āĻĻ-āĻŽā§āϞ)}Ãˇ(100+āϏā§āĻĻā§āϰ āĻšāĻžāϰÃāϏāĻŽāϝāĻŧ )
6. āϏā§āĻĻāĻžāϏāϞ = āĻāϏāϞ + āϏā§āĻĻ
7. āϏā§āĻĻāĻžāϏāϞ = āĻāϏāϞ Ã(1+ āϏā§āĻĻā§āϰ āĻšāĻžāϰ)à āϏāĻŽāϝāĻŧ |[āĻāĻā§āϰāĻŦā§āĻĻā§āϧāĻŋ āϏā§āĻĻā§āϰ āĻā§āώā§āϤā§āϰā§]āĨ¤
_____________________________________________
âđŖī¸āϞāĻžāĻ-āĻā§āώāϤāĻŋāϰ āĻāĻŦāĻ āĻā§āϰāϝāĻŧ-āĻŦāĻŋāĻā§āϰāϝāĻŧā§āϰ āϏā§āϤā§āϰāĻžāĻŦāϞā§đŠ
1. āϞāĻžāĻ = āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ-āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ
2.āĻā§āώāϤāĻŋ = āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ-āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ
3.āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ = āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ-āϞāĻžāĻ
āĻ
āĻĨāĻŦāĻž
āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ = āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ + āĻā§āώāϤāĻŋ
4.āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ = āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ + āϞāĻžāĻ
āĻ
āĻĨāĻŦāĻž
āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ = āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ-āĻā§āώāϤāĻŋ
_____________________________________________
âđŖī¸1-100 āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻžāĻŽāύ⧠āϰāĻžāĻāĻžāϰ āϏāĻšāĻ āĻāĻĒāĻžāϝāĻŧāĻđŠ
āĻļāϰā§āĻāĻāĻžāĻ :- 44 -22 -322-321
â
1āĻĨā§āĻā§100āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=25āĻāĻŋ
â
1āĻĨā§āĻā§10āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=4āĻāĻŋ 2,3,5,7
â
11āĻĨā§āĻā§20āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=4āĻāĻŋ 11,13,17,19
â
21āĻĨā§āĻā§30āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=2āĻāĻŋ 23,29
â
31āĻĨā§āĻā§40āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=2āĻāĻŋ 31,37
â
41āĻĨā§āĻā§50āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=3āĻāĻŋ 41,43,47
â
51āĻĨā§āĻā§ 60āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=2āĻāĻŋ 53,59
â
61āĻĨā§āĻā§70āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=2āĻāĻŋ 61,67
â
71āĻĨā§āĻā§80 āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=3āĻāĻŋ 71,73,79
â
81āĻĨā§āĻā§ 90āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=2āĻāĻŋ 83,89
â
91āĻĨā§āĻā§100āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž=1āĻāĻŋ 97
đŠ1-100 āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž 25 āĻāĻŋāĻ
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
đŠ1-100āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āϝā§āĻāĻĢāϞ
1060āĨ¤
_____________________________________________
đŠ1.āĻā§āύ āĻāĻŋāĻā§āϰ
āĻāϤāĻŋāĻŦā§āĻ= āĻ
āϤāĻŋāĻā§āϰāĻžāύā§āϤ āĻĻā§āϰāϤā§āĻŦ/āϏāĻŽāϝāĻŧ
2.āĻ
āϤāĻŋāĻā§āϰāĻžāύā§āϤ āĻĻā§āϰāϤā§āĻŦ = āĻāϤāĻŋāĻŦā§āĻÃāϏāĻŽāϝāĻŧ
3.āϏāĻŽāϝāĻŧ= āĻŽā§āĻ āĻĻā§āϰāϤā§āĻŦ/āĻŦā§āĻ
4.āϏā§āϰā§āϤā§āϰ āĻ
āύā§āĻā§āϞ⧠āύā§āĻāĻžāϰ āĻāĻžāϰā§āϝāĻāϰ⧠āĻāϤāĻŋāĻŦā§āĻ = āύā§āĻāĻžāϰ āĻĒā§āϰāĻā§āϤ āĻāϤāĻŋāĻŦā§āĻ + āϏā§āϰā§āϤā§āϰ āĻāϤāĻŋāĻŦā§āĻāĨ¤
5.āϏā§āϰā§āϤā§āϰ āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠āύā§āĻāĻžāϰ āĻāĻžāϰā§āϝāĻāϰ⧠āĻāϤāĻŋāĻŦā§āĻ = āύā§āĻāĻžāϰ āĻĒā§āϰāĻā§āϤ āĻāϤāĻŋāĻŦā§āĻ - āϏā§āϰā§āϤā§āϰ āĻāϤāĻŋāĻŦā§āĻ
_____________________________________________
đŖī¸āϏāϰāϞ āϏā§āĻĻđŠ
āϝāĻĻāĻŋ āĻāϏāϞ=P, āϏāĻŽāϝāĻŧ=T, āϏā§āĻĻā§āϰ āĻšāĻžāϰ=R, āϏā§āĻĻ-āĻāϏāϞ=A āĻšāϝāĻŧ, āϤāĻžāĻšāϞā§
1.āϏā§āĻĻā§āϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖ= PRT/100
2.āĻāϏāϞ= 100ÃāϏā§āĻĻ-āĻāϏāϞ(A)/100+TR
_____________________________________________
âđŠāύā§āĻāĻžāϰ āĻāϤāĻŋ āϏā§āϰā§āϤā§āϰ āĻ
āύā§āĻā§āϞ⧠āĻāύā§āĻāĻžāϝāĻŧ 10 āĻāĻŋ.āĻŽāĻŋ. āĻāĻŦāĻ āϏā§āϰā§āϤā§āϰ āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠2 āĻāĻŋ.āĻŽāĻŋ.āĨ¤ āϏā§āϰā§āϤā§āϰ āĻŦā§āĻ āĻāϤ?
â
āĻā§āĻāύāĻŋāĻ-
āϏā§āϰā§āϤā§āϰ āĻŦā§āĻ = (āϏā§āϰā§āϤā§āϰ āĻ
āύā§āĻā§āϞ⧠āύā§āĻāĻžāϰ āĻŦā§āĻ - āϏā§āϰā§āϤā§āϰ āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠āύā§āĻāĻžāϰ āĻŦā§āĻ) /2
= (10 - 2)/2=
= 4 āĻāĻŋ.āĻŽāĻŋ.
đŠāĻāĻāĻāĻŋ āύā§āĻāĻž āϏā§āϰā§āϤā§āϰ āĻ
āύā§āĻā§āϞ⧠āĻāύā§āĻāĻžāϝāĻŧ 8 āĻāĻŋ.āĻŽāĻŋ.āĻāĻŦāĻ āϏā§āϰā§āϤā§āϰ āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠āĻāύā§āĻāĻžāϝāĻŧ 4 āĻāĻŋ.āĻŽāĻŋ.
āϝāĻžāϝāĻŧāĨ¤ āύā§āĻāĻžāϰ āĻŦā§āĻ āĻāϤ?
â
āĻā§āĻāύāĻŋāĻ-
āύā§āĻāĻžāϰ āĻŦā§āĻ = (āϏā§āϰā§āϤā§āϰ āĻ
āύā§āĻā§āϞ⧠āύā§āĻāĻžāϰ āĻŦā§āĻ+āϏā§āϰā§āϤā§āϰ āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠āύā§āĻāĻžāϰ āĻŦā§āĻ)/2
= (8 + 4)/2
=6 āĻāĻŋ.āĻŽāĻŋ.
đŠāύā§āĻāĻž āĻ āϏā§āϰā§āϤā§āϰ āĻŦā§āĻ āĻāύā§āĻāĻžāϝāĻŧ āϝāĻĨāĻžāĻā§āϰāĻŽā§ 10 āĻāĻŋ.āĻŽāĻŋ. āĻ 5 āĻāĻŋ.āĻŽāĻŋ.āĨ¤ āύāĻĻā§āĻĒāĻĨā§ 45 āĻāĻŋ.āĻŽāĻŋ. āĻĒāĻĨ āĻāĻāĻŦāĻžāϰ āĻāĻŋāϝāĻŧā§ āĻĢāĻŋāϰ⧠āĻāϏāϤ⧠āĻāϤ āϏāĻŽāϝāĻŧ āϞāĻžāĻāĻŦā§?
āĻā§āĻāύāĻŋāĻ-
â
āĻŽāĻžā§āĻ āϏāĻŽāϝāĻŧ = [(āĻŽāĻžā§āĻ āĻĻā§āϰāϤā§āĻŦ/ āĻ
āύā§āĻā§āϞ⧠āĻŦā§āĻ) + (āĻŽāĻžā§āĻ āĻĻā§āϰāϤā§āĻŦ/āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠āĻŦā§āĻ)]
āĻāϤā§āϤāϰ:āϏā§āϰā§āϤā§āϰ āĻ
āύā§āĻā§āϞ⧠āύā§āĻāĻžāϰāĻŦā§āĻ = (10+5) = 15 āĻāĻŋ.āĻŽāĻŋ.
āϏā§āϰā§āϤā§āϰ āĻĒā§āϰāϤāĻŋāĻā§āϞ⧠āύā§āĻāĻžāϰ āĻŦā§āĻ = (10-5) = 5āĻāĻŋ.āĻŽāĻŋ.
[(45/15) +(45/5)]
= 3+9
=12 āĻāύā§āĻāĻž
_____________________________________________
đŠâ
āϏāĻŽāĻžāύā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻā§āϰāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āϝā§āĻāĻĢāϞ-
(āϝāĻāύ āϏāĻāĻā§āϝāĻžāĻāĻŋ1 āĻĨā§āĻā§ āĻļā§āϰā§)1+2+3+4+......+n āĻšāϞ⧠āĻāϰā§āĻĒ āϧāĻžāϰāĻžāϰ āϏāĻŽāώā§āĻāĻŋ= [n(n+1)/2]
n=āĻļā§āώ āϏāĻāĻā§āϝāĻž āĻŦāĻž āĻĒāĻĻ āϏāĻāĻā§āϝāĻž s=āϝā§āĻāĻĢāϞ
đŠ āĻĒā§āϰāĻļā§āύāĻ 1+2+3+....+100 =?
đ āϏāĻŽāĻžāϧāĻžāύāĻ[n(n+1)/2]
= [100(100+1)/2]
= 5050
đŠâ
āϏāĻŽāĻžāύā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻŦāϰā§āĻ āϝā§āĻ āĻĒāĻĻā§āϧāϤāĻŋāϰ āĻā§āώā§āϤā§āϰā§,-
āĻĒā§āϰāĻĨāĻŽ n āĻĒāĻĻā§āϰ āĻŦāϰā§āĻā§āϰ āϏāĻŽāώā§āĻāĻŋ
S= [n(n+1)2n+1)/6]
(āϝāĻāύ 1² + 2²+ 3² + 4²........ +n²)
đŠāĻĒā§āϰāĻļā§āύāĻ(1² + 3²+ 5² + ....... +31²) āϏāĻŽāĻžāύ āĻāϤ?
đāϏāĻŽāĻžāϧāĻžāύāĻ S=[n(n+1)2n+1)/6]
= [31(31+1)2Ã31+1)/6]
=31
đŠâ
āϏāĻŽāĻžāύā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻāύāϝā§āĻ āĻĒāĻĻā§āϧāϤāĻŋāϰ āĻā§āώā§āϤā§āϰā§-
āĻĒā§āϰāĻĨāĻŽ n āĻĒāĻĻā§āϰ āĻāύā§āϰ āϏāĻŽāώā§āĻāĻŋ S= [n(n+1)/2]2
(āϝāĻāύ 1Âŗ+2Âŗ+3Âŗ+.............+nÂŗ)
đŠāĻĒā§āϰāĻļā§āύāĻ1Âŗ+2Âŗ+3Âŗ+4Âŗ+âĻâĻâĻâĻ+10Âŗ=?
đāϏāĻŽāĻžāϧāĻžāύāĻ [n(n+1)/2]2
= [10(10+1)/2]2
= 3025
_____________________________________________
đŠâ
āĻĒāĻĻ āϏāĻāĻā§āϝāĻž āĻ āĻĒāĻĻ āϏāĻāĻā§āϝāĻžāϰ āϏāĻŽāώā§āĻāĻŋ āύāĻŋāϰā§āύāϝāĻŧā§āϰ āĻā§āώā§āϤā§āϰā§āĻ
āĻĒāĻĻ āϏāĻāĻā§āϝāĻž N= [(āĻļā§āώ āĻĒāĻĻ â āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ)/āĻĒā§āϰāϤāĻŋ āĻĒāĻĻā§ āĻŦā§āĻĻā§āϧāĻŋ] +1
đŠāĻĒā§āϰāĻļā§āύāĻ5+10+15+âĻâĻâĻâĻ+50=?
đāϏāĻŽāĻžāϧāĻžāύāĻ āĻĒāĻĻāϏāĻāĻā§āϝāĻž = [(āĻļā§āώ āĻĒāĻĻ â āĻĒā§āϰāĻĨāĻŽāĻĒāĻĻ)/āĻĒā§āϰāϤāĻŋ āĻĒāĻĻā§ āĻŦā§āĻĻā§āϧāĻŋ]+1
= [(50 â 5)/5] + 1
=10
āϏā§āϤāϰāĻžāĻ āĻĒāĻĻ āϏāĻāĻā§āϝāĻžāϰ āϏāĻŽāώā§āĻāĻŋ
= [(5 + 50)/2] Ã10
= 275
đŠâ
n āϤāĻŽ āĻĒāĻĻ=a + (n-1)d
āĻāĻāĻžāύā§, n =āĻĒāĻĻāϏāĻāĻā§āϝāĻž, a = 1āĻŽ āĻĒāĻĻ, d= āϏāĻžāϧāĻžāϰāĻŖ āĻ
āύā§āϤāϰ
đŠāĻĒā§āϰāĻļā§āύāĻ 5+8+11+14+.......āϧāĻžāϰāĻžāĻāĻŋāϰ āĻā§āύ āĻĒāĻĻ 302?
đ āϏāĻŽāĻžāϧāĻžāύāĻ āϧāϰāĻŋ, n āϤāĻŽ āĻĒāĻĻ =302
āĻŦāĻž, a + (n-1)d=302
āĻŦāĻž, 5+(n-1)3 =302
āĻŦāĻž, 3n=300
āĻŦāĻž, n=100
đŠāϏāĻŽāĻžāύā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻā§āϰāĻŽāĻŋāĻ āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻžāϰ āϝā§āĻāĻĢāϞ-S=M² āĻāĻāĻžāύā§,M=āĻŽāϧā§āϝā§āĻŽāĻž=(1āĻŽ āϏāĻāĻā§āϝāĻž+āĻļā§āώ āϏāĻāĻā§āϝāĻž)/2
đŠāĻĒā§āϰāĻļā§āύāĻ1+3+5+.......+19=āĻāϤ?
đ āϏāĻŽāĻžāϧāĻžāύāĻ S=M²
={(1+19)/2}²
=(20/2)²
=100
_____________________________________________
âđŠ āĻŦāϰā§āĻđ
(1)²=1,(11)²=121,(111)²=12321,(1111)²=1234321,(11111)²=123454321
đŠđāύāĻŋāϝāĻŧāĻŽ-āϝāϤāĻā§āϞ⧠1 āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āύāĻŋāϝāĻŧā§ āĻŦāϰā§āĻ āĻāϰāĻž āĻšāĻŦā§, āĻŦāϰā§āĻ āĻĢāϞ⧠1 āĻĨā§āĻā§ āĻļā§āϰ⧠āĻāϰ⧠āĻĒāϰ āĻĒāϰ āϏā§āĻ āϏāĻāĻā§āϝāĻž āĻĒāϰā§āϝāύā§āϤ āϞāĻŋāĻāϤ⧠āĻšāĻŦā§ āĻāĻŦāĻ āϤāĻžāϰāĻĒāϰ āϏā§āĻ āϏāĻāĻā§āϝāĻžāϰ āĻĒāϰ āĻĨā§āĻā§ āĻ
āϧāĻāĻā§āϰāĻŽā§ āĻĒāϰāĻĒāϰ āϏāĻāĻā§āϝāĻžāĻā§āϞ⧠āϞāĻŋāĻā§ 1 āϏāĻāĻā§āϝāĻžāϝāĻŧ āĻļā§āώ āĻāϰāϤ⧠āĻšāĻŦā§āĨ¤
đŠ(3)²=9,(33)²=1089,(333)²=110889,(3333)²=11108889,(33333)²=1111088889
đāϝāϤāĻā§āϞāĻŋ 3 āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āύāĻŋāϝāĻŧā§ āĻŦāϰā§āĻ āĻāϰāĻž āĻšāĻŦā§, āĻŦāϰā§āĻ āĻĢāϞ⧠āĻāĻāĻā§āϰ āĻāϰ⧠9 āĻāĻŦāĻ 9 āĻāϰ āĻŦāĻžāĻāĻĻāĻŋāĻā§ āϤāĻžāϰ āĻā§āϝāĻŧā§ (āϝāϤāĻā§āϞ⧠3 āĻĨāĻžāĻāĻŦā§) āĻāĻāĻāĻŋ āĻāĻŽ āϏāĻāĻā§āϝāĻ 8, āϤāĻžāϰ āĻĒāϰ āĻŦāĻžāĻāĻĻāĻŋāĻā§ āĻāĻāĻāĻŋ 0 āĻāĻŦāĻ āĻŦāĻžāĻāĻĻāĻŋāĻā§ 8 āĻāϰ āϏāĻŽāϏāĻāĻā§āϝāĻ 1 āĻŦāϏāĻŦā§āĨ¤
đŠ(6)²=36,(66)²=4356,(666)²=443556,(6666)²=44435556,(66666)²=4444355556
đāϝāϤāĻā§āϞāĻŋ 6 āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āύāĻŋāϝāĻŧā§ āĻŦāϰā§āĻ āĻāϰāĻž āĻšāĻŦā§, āĻŦāϰā§āĻ āĻĢāϞ⧠āĻāĻāĻā§āϰ āĻāϰ⧠6 āĻāĻŦāĻ 6 āĻāϰ āĻŦāĻžāĻāĻĻāĻŋāĻā§ āϤāĻžāϰ āĻā§āϝāĻŧā§ (āϝāϤāĻā§āϞ⧠6 āĻĨāĻžāĻāĻŦā§) āĻāĻāĻāĻŋ āĻāĻŽ āϏāĻāĻā§āϝāĻ 5, āϤāĻžāϰ āĻĒāϰ āĻŦāĻžāĻāĻĻāĻŋāĻā§ āĻāĻāĻāĻŋ 3 āĻāĻŦāĻ āĻŦāĻžāĻāĻĻāĻŋāĻā§ 5 āĻāϰ āϏāĻŽāϏāĻāĻā§āϝāĻ 4 āĻŦāϏāĻŦā§āĨ¤
đŠ(9)²=81,(99)²=9801,(999)²=998001,(9999)²=99980001,(99999)²=9999800001
đāϝāϤāĻā§āϞāĻŋ 9 āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āύāĻŋāϝāĻŧā§ āĻŦāϰā§āĻ āĻāϰāĻž āĻšāĻŦā§, āĻŦāϰā§āĻ āĻĢāϞ⧠āĻāĻāĻā§āϰ āĻāϰ⧠1 āĻāĻŦāĻ 1 āĻāϰ āĻŦāĻžāĻāĻĻāĻŋāĻā§ āϤāĻžāϰ āĻā§āϝāĻŧā§ (āϝāϤāĻā§āϞ⧠9 āĻĨāĻžāĻāĻŦā§) āĻāĻāĻāĻŋ āĻāĻŽ āϏāĻāĻā§āϝāĻ 0, āϤāĻžāϰ āĻĒāϰ āĻŦāĻžāĻāĻĻāĻŋāĻā§ āĻāĻāĻāĻŋ 8 āĻāĻŦāĻ āĻŦāĻžāĻāĻĻāĻŋāĻā§ 0 āĻāϰ āϏāĻŽāϏāĻāĻā§āϝāĻ 9 āĻŦāϏāĻŦā§āĨ¤
_____________________________________________
âđŖī¸đāĻāύāĻâ Father
1)Numerology (āϏāĻāĻā§āϝāĻžāϤāϤā§āϤā§āĻŦ)- Pythagoras(āĻĒāĻŋāĻĨāĻžāĻā§āϰāĻžāϏ)
2) Geometry(āĻā§āϝāĻžāĻŽāĻŋāϤāĻŋ)- Euclid(āĻāĻāĻā§āϞāĻŋāĻĄ)
3) Calculus(āĻā§āϝāĻžāϞāĻā§āϞāĻžāϏ)- Newton(āύāĻŋāĻāĻāύ)
4) Matrix(āĻŽā§āϝāĻžāĻā§āϰāĻŋāĻā§āϏ) - Arthur Cayley(āĻ
āϰā§āĻĨāĻžāϰ āĻā§āϝāĻžāϞā§)
5)Trigonometry(āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋ)Hipparchus(āĻšāĻŋāĻĒā§āĻĒāĻžāϰāĻāĻžāϏ)
6) Asthmatic(āĻĒāĻžāĻāĻŋāĻāĻŖāĻŋāϤ) Brahmagupta(āĻŦā§āϰāĻšā§āĻŽāĻā§āĻĒā§āϤ)
7) Algebra(āĻŦā§āĻāĻāĻŖāĻŋāϤ)- Muhammad ibn Musa al-Khwarizmi(āĻŽāĻžā§āĻšāĻžāĻŽā§āĻŽāĻĻ āĻŽā§āϏāĻž āĻāϞ āĻāĻžāϰāĻŋāĻāĻŽā§)
đ Logarithm(āϞāĻāĻžāϰāĻŋāĻĻāĻŽ)- John Napier(āĻāύ āύā§āĻĒāĻŋāϝāĻŧāĻžāϰ)
9) Set theory(āϏā§āĻ āϤāϤā§āϤā§āĻŦ)- George Cantor(āĻāϰā§āĻ āĻā§āϝāĻžāύā§āĻāϰ)
10) Zero(āĻļā§āύā§āϝ)- Brahmagupta(āĻŦā§āϰāĻšā§āĻŽāĻā§āĻĒā§āϤ)
_____________________________________________
đâđāĻ
āĻā§āĻā§āϰ āĻāĻāϰā§āĻāĻŋ āĻļāĻŦā§āĻĻ
āĻĒāĻžāĻāĻŋāĻāĻŖāĻŋāϤ āĻ āĻĒāϰāĻŋāĻŽāĻŋāϤāĻŋ
āĻ
āĻā§āĻ-Digit, āĻ
āύā§āĻĒāĻžāϤ-Ratio, āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻžâPrime number, āĻĒā§āϰā§āĻŖāĻŦāϰā§āĻ-Perfect square,āĻā§āĻĒāĻžāĻĻāĻ-Factor,āĻā§āϰāĻŽāĻŋāĻ āϏāĻŽāĻžāύā§āĻĒāĻžāϤā§âContinued proportion, āĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ -Cost price, āĻā§āώāϤāĻŋ-Loss, āĻāĻĄāĻŧ-Average, āĻāϤāĻŋāĻŦā§āĻ-Velocity, āĻā§āĻŖāĻĢāϞ-Product, āĻ,āϏāĻž,āĻā§-Highest Common Factor, āĻāĻžāϤ-Power, āĻāύāĻŽā§āϞâCube root, āĻāύāĻ-Cube, āĻāύāĻĢāϞ-Volume, āĻĒā§āϰā§āύāϏāĻāĻā§āϝāĻž-Integer, āĻāĻžāĻĒ-Arc, āĻā§āĻ-Cylinder, āĻā§āϝāĻž-Chord, āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž-Even number, āϧā§āϰā§āĻŦāĻ-Constant, āĻĒāϰāĻŋāϏā§āĻŽāĻž-Perimeter, āĻŦāĻžāϏā§āϤāĻŦ-Real, āĻŦāϰā§āĻāĻŽā§āϞ-Square root, āĻŦā§āϝāϏā§āϤ āĻ
āύā§āĻĒāĻžāϤâInverse ratio, āĻŦāĻŋāĻā§āĻĄāĻŧāϏāĻāĻā§āϝāĻžâOdd number, āĻŦāĻŋāĻā§āϰāϝāĻŧāĻŽā§āϞā§āϝ -Selling price, āĻŦā§āĻāĻāĻŖāĻŋāϤâAlgebra, āĻŽā§āϞāĻĻ Rational, āĻŽāϧā§āϝ āϏāĻŽāĻžāύā§āĻĒāĻžāϤ⧠-Mean proportional, āϝāĻžā§āĻāĻĢāϞ=Sum
āϞ,āϏāĻž,āĻā§-Lowest Common Multiple, āϞāĻŦ-Numerator, āĻļāϤāĻāϰāĻž-Percentage, āϏāĻŽāĻžāύā§āĻĒāĻžāϤ-Proportion, āϏāĻŽāĻžāύā§āĻĒāĻžāϤā§-Proportional, āϏā§āĻĻ-Interest, āĻšāϰ-Denominator,
_____________________________________________
â¤ī¸āĻā§āϝāĻžāĻŽāĻŋāϤāĻŋ
āĻ
āϤāĻŋāĻā§āĻâHypotenuse, āĻ
āύā§āϤāĻāĻā§āĻŖ-Internal angle, āĻ
āϰā§āϧāĻŦā§āϤā§āϤ-Semi-circle, āĻ
āύā§āϤ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ-In-radius, āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰ-Rectangle, āĻāĻā§āĻāϤāĻž-Height, āĻāϰā§āĻŖâDiagonal, āĻā§āĻŖ-Angle, āĻā§āύā§āĻĻā§āϰ-Centre, āĻāĻžā§āϞāĻ-Sphere, āĻāϤā§āϰā§āĻā§āĻ-Quadrilateral, āĻā§āĻ-Cylinder,āĻā§āϝāĻžāĻŽāĻŋāϤāĻŋ-Geometry,āĻĻā§āϰā§āĻā§āϝ-Length, āĻĒāĻā§āĻāĻā§āĻ -Pentagon, āĻĒā§āϰāϏā§āĻĨ-Breadth
āĻĒā§āϰāĻāĻā§āύ-Complementary angles, āĻŦāĻžāĻšā§-Side, āĻŦā§āϤā§āϤ-Circle, āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ-Radius, āĻŦā§āϝāĻžāϏ-Diameter, āĻŦāĻšā§āĻā§āĻ-Polygon, āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰâSquare, āĻŦāĻšāĻŋ:āϏā§āĻĨ External, āĻļāĻā§āĻā§-Cone, āϏāĻŽāĻā§āĻŖ-Right angle, āϏāĻŽāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻ-Equilateral triangle, āĻ
āϏāĻŽāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻâScalene triangle, āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻ-isosceles Triangle,āϏāĻŽāĻā§āĻŖā§ āϤā§āϰāĻŋāĻā§āĻ Right angled triangle, āϏā§āĻā§āώā§āĻŽāĻā§āĻŖā§-Acute angled triangle, āϏā§āĻĨā§āϞāĻā§āĻŖā§ āϤā§āϰāĻŋāĻā§āĻ Obtuse angled triangle, āϏāĻŽāĻžāύā§āϤāϰāĻžāϞâParallel, āϏāϰāϞāϰā§āĻāĻžâStraight line, āϏāĻŽā§āĻĒā§āϰāĻ āĻā§āĻŖâSupplementary angles, āϏāĻĻā§āĻļāĻā§āĻŖā§-Equiangular
_____________________________________________
đŠāϰā§āĻŽāĻžāύ āϏāĻāĻā§āϝāĻžâ Roman numerals )
1:I
2: II
3: III
4: IV
5: V
6: VI
7: VII
8: VIII
9: IX
10: X
11: XI
12: XII
13: XIII
14: XIV
15: XV
16: XVI
17: XVII
18: XVIII
19: XIX
20: XX
30: ###
40: XL
50: L
60: LX
70: LXX
80: L###
90: XC
100: C
200: CC
300: CCC
400: CD
500: D
600: DC
700: DCC
800: DCCC
900: CM
1000:M
_____________________________________________
âđŖī¸1. āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž + āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž = āĻā§āĻĄāĻŧ
āϏāĻāĻā§āϝāĻžāĨ¤
āϝā§āĻŽāύāĻ 2 + 6 = 8.
đŖī¸2. āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž + āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž =
āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻžāĨ¤
āϝā§āĻŽāύāĻ 6 + 7 = 13.
đŖī¸3. āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž + āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž =
āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻžāĨ¤
āϝā§āĻŽāύāĻ 3 + 5 = 8.
đŖī¸4. āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž à āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž = āĻā§āĻĄāĻŧ
āϏāĻāĻā§āϝāĻžāĨ¤
āϝā§āĻŽāύāĻ 6 à 8 = 48.
đŖī¸5.āĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž à āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž = āĻā§āĻĄāĻŧ
āϏāĻāĻā§āϝāĻžāĨ¤
āϝā§āĻŽāύāĻ 6 à 7 = 42
đŖī¸6.āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž à āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž =
āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻžāĨ¤
āϝā§āĻŽāύāĻ 3 à 9 = 27
_____________________________________________
âđāĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āĻāĻžāĻĄāĻŧāĻž āϝ⧠āĻā§āύ āϏāĻāĻā§āϝāĻžāĻā§ āĻāĻžāĻ āĻāϰāĻžāϰ āĻāĻāĻāĻŋ effective āĻā§āĻāύāĻŋāĻ!
đ āĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āĻāĻžāĻĄāĻŧāĻž āϝ⧠āĻā§āύ āϏāĻāĻā§āϝāĻžāĻā§ 5 āĻĻāĻŋāϝāĻŧā§ āĻāĻžāĻ āĻāϰāĻžāϰ āĻāĻāĻāĻŋ effective āĻā§āĻāύāĻŋāĻ
1.đŠ 13/5= 2.6 (āĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āĻāĻžāĻĄāĻŧāĻž āĻŽāĻžāϤā§āϰ ā§Š āϏā§āĻā§āύā§āĻĄā§ āĻāĻāĻŋ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻž āϝāĻžāϝāĻŧ)
ââ
āĻā§āĻāύāĻŋāĻāĻ
5 āĻĻāĻŋāϝāĻŧā§ āϝ⧠āϏāĻāĻā§āϝāĻžāĻā§ āĻāĻžāĻ āĻāϰāĻŦā§āύ āϤāĻžāĻā§ 2 āĻĻāĻŋāϝāĻŧā§ āĻā§āĻŖ āĻāϰā§āύ āϤāĻžāϰāĻĒāϰ āĻĄāĻžāύāĻĻāĻŋāĻ āĻĨā§āĻā§ 1 āĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻŋāϝāĻŧā§ āĻĻāĻŋāύāĨ¤ āĻāĻžāĻ āĻļā§āώ!!! 13*2=26, āϤāĻžāϰāĻĒāϰ āĻĨā§āĻā§ 1 āĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻŋāϝāĻŧā§ āĻĻāĻŋāϞ⧠2.6 āĨ¤
2.đŠ 213/5=42.6 (213*2=426)
0.03/5= 0.006 (0.03*2=0.06 āϝāĻžāϰ āĻāĻāĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻžāϞ⧠āĻšāϝāĻŧ 0.006) 333,333,333/5= 66,666,666.6 (āĻāĻ āĻā§āϞāĻž āĻāϰāϤ⧠āĻāĻŦāĻžāϰ āĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āϞāĻžāĻā§ āύāĻž āĻāĻŋ!)
3.đŠ 12,121,212/5= 2,424,242.4
āĻāĻŦāĻžāϰ āύāĻŋāĻā§ āĻāĻā§āĻā§āĻŽāϤ 5 āĻĻāĻŋāϝāĻŧā§ āϝ⧠āĻā§āύ āϏāĻāĻā§āϝāĻžāĻā§ āĻāĻžāĻ āĻāϰ⧠āĻĻā§āĻā§āύ
đđ āĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āĻāĻžāĻĄāĻŧāĻž āϝ⧠āĻā§āύ āϏāĻāĻā§āϝāĻžāĻā§ 25 āĻĻāĻŋāϝāĻŧā§ āĻāĻžāĻ āĻāϰāĻžāϰ āĻāĻāĻāĻŋ effective āĻā§āĻāύāĻŋāĻ
1.đŠ 13/25=0.52 (āĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āĻāĻžāĻĄāĻŧāĻž āĻāĻāĻŋāĻ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻž āϝāĻžāϝāĻŧ)
ââ
āĻā§āĻāύāĻŋāĻāĻ
25 āĻĻāĻŋāϝāĻŧā§ āϝ⧠āϏāĻāĻā§āϝāĻžāĻā§ āĻāĻžāĻ āĻāϰāĻŦā§āύ āϤāĻžāĻā§ 4 āĻĻāĻŋāϝāĻŧā§ āĻā§āĻŖ āĻāϰā§āύ āϤāĻžāϰāĻĒāϰ āĻĄāĻžāύāĻĻāĻŋāĻ āĻĨā§āĻā§ 2 āĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻŋāϝāĻŧā§ āĻĻāĻŋāύāĨ¤ 13*4=52, āϤāĻžāϰāĻĒāϰ āĻĨā§āĻā§ 2 āĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻŋāϝāĻŧā§ āĻĻāĻŋāϞ⧠0.52 āĨ¤
02.đŠ 210/25 = 8.40
03.đŠ 0.03/25 = 0.0012
04.đŠ 222,222/25 = 8,888.88
05đŠ. 13,121,312/25 = 524,852.48
âđ āĻā§āϝāĻžāϞāĻā§āϞā§āĻāϰ āĻāĻžāĻĄāĻŧāĻž āϝ⧠āĻā§āύ āϏāĻāĻā§āϝāĻžāĻā§ 125 āĻĻāĻŋāϝāĻŧā§ āĻāĻžāĻ āĻāϰāĻžāϰ āĻāĻāĻāĻŋ effective āĻā§āĻāύāĻŋāĻ
01.đŠ 7/125 = 0.056
ââ
āĻā§āĻāύāĻŋāĻāĻ
125 āĻĻāĻŋāϝāĻŧā§ āϝ⧠āϏāĻāĻā§āϝāĻžāĻā§ āĻāĻžāĻ āĻāϰāĻŦā§āύ āϤāĻžāĻā§ 8 āĻĻāĻŋāϝāĻŧā§ āĻā§āĻŖ āĻāϰā§āύ āϤāĻžāϰāĻĒāϰ āĻĄāĻžāύāĻĻāĻŋāĻ āĻĨā§āĻā§ 3 āĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻŋāϝāĻŧā§ āĻĻāĻŋāύāĨ¤ āĻāĻžāĻ āĻļā§āώ! 7*8=56, āϤāĻžāϰāĻĒāϰ āĻĨā§āĻā§ 3 āĻāϰ āĻāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻŦāϏāĻŋāϝāĻŧā§ āĻĻāĻŋāϞ⧠0.056 āĨ¤
02.đŠ 111/125 = 0.888
03.đŠ 600/125 = 4.800
_____________________________________________
âđŖī¸đāĻāϏā§āύ āϏāĻšāĻā§ āĻāϰāĻŋ
āĻāĻĒāĻŋāĻāĻ 10 āϏā§āĻā§āύā§āĻĄā§ āĻŦāϰā§āĻāĻŽā§āϞ āύāĻŋāϰā§āĻŖāϝāĻŧāĨ¤
āĻŦāĻŋāĻāĻĻā§āϰāĻ āϝ⧠āϏāĻāĻā§āϝāĻžāĻā§āϞā§āϰ āĻŦāϰā§āĻāĻŽā§āϞ 1 āĻĨā§āĻā§ 99 āĻāϰ āĻŽāϧā§āϝ⧠āĻāĻ āĻĒāĻĻā§āϧāϤāĻŋāϤ⧠āϤāĻžāĻĻā§āϰ āĻŦā§āϰ āĻāϰāĻž āϝāĻžāĻŦā§ āĻā§āĻŦ āϏāĻšāĻā§āĻāĨ¤ āĻĒā§āϰāĻļā§āύ⧠āĻ
āĻŦāĻļā§āϝāĻ āĻĒā§āϰā§āĻŖāĻŦāϰā§āĻ āϏāĻāĻā§āϝāĻž āĻĨāĻžāĻāĻž āϞāĻžāĻāĻŦā§āĨ¤ āĻ
āϰā§āĻĨāĻžā§ āĻāϤā§āϤāϰ āϝāĻĻāĻŋ āĻĻāĻļāĻŽāĻŋāĻ āĻāĻā§āύāĻžāĻāĻļ āĻāϏ⧠āϤāĻŦā§ āĻāĻ āĻĒāĻĻā§āĻŦāϤāĻŋ āĻāĻžāĻā§ āĻāϏāĻŦā§āύāĻžāĨ¤
āĻ
āĻŦāĻļā§āϝāĻ āĻŽāύā§āϝā§āĻ āĻĻāĻŋāϝāĻŧā§ āĻĒāĻĄāĻŧāϤ⧠āĻšāĻŦā§ āĻāĻŦāĻ āĻĒā§āϰā§āϝāĻžāĻāĻāĻŋāϏ āĻāϰāϤ⧠āĻšāĻŦā§āĨ¤ āύāϝāĻŧāϤ āĻā§āϞ⧠āϝāĻžāĻŦā§āύāĨ¤
āϤāĻŦā§ āĻāϏā§āύ āĻļā§āϰ⧠āĻāϰāĻž āϝāĻžāĻāĨ¤ āĻļā§āϰā§āϤ⧠1 āĻĨā§āĻā§ 9 āĻĒāϰā§āϝāύā§āϤ āϏāĻāĻā§āϝāĻžāϰ āĻŦāϰā§āĻ āĻŽā§āĻāϏā§āĻĨ āĻāϰ⧠āύāĻŋāĻāĨ¤ āĻāĻļāĻž āĻāϰāĻŋ āĻāĻā§āϞ⧠āϏāĻŦāĻžāĻ āĻāĻžāύā§āύāĨ¤ āϏā§āĻŦāĻŋāϧāĻžāϰ āĻāύā§āϝ⧠āĻāĻŽāĻŋ āύāĻŋāĻā§ āϞāĻŋāĻā§ āĻĻāĻŋāĻā§āĻāĻŋ-
1 square = 1, 2 square = 4
3 square = 9, 4 square = 16
5 square = 25, 6 square = 36
7 square = 49, 8 square = 64
9 square = 81
āĻāĻāĻžāύ⧠āĻĒā§āϰāϤā§āϝā§āĻāĻāĻž āĻŦāϰā§āĻ āϏāĻāĻā§āϝāĻžāϰ āĻĻāĻŋāĻā§ āĻā§āϝāĻŧāĻžāϞ āĻāϰāϞ⧠āĻĻā§āĻāĻŦā§āύ, āϏāĻŦāĻžāϰ āĻļā§āώā§āϰ āĻ
āĻāĻāĻāĻŋāϰ āĻā§āώā§āϤā§āϰ⧠-
â
1 āĻāϰ 9 āĻāϰ āĻŦāϰā§āĻā§āϰ āĻļā§āώ āĻ
āĻāĻ āĻŽāĻŋāϞ āĻāĻā§ (1, 81)
â
2 āĻāϰ 8 āĻāϰ āĻŦāϰā§āĻā§āϰ āĻļā§āώ āĻ
āĻāĻ āĻŽāĻŋāϞ āĻāĻā§(4, 64)
â
3 āĻāϰ 7 āĻāϰ āĻŦāϰā§āĻā§āϰ āĻļā§āώ āĻ
āĻāĻ āĻŽāĻŋāϞ āĻāĻā§ (9, 49);
â
4 āĻāϰ 6 āĻāϰ āĻŦāϰā§āĻā§āϰ āĻļā§āώ āĻ
āĻāĻ āĻŽāĻŋāϞ āĻāĻā§(16, 36);
āĻāĻŦāĻ 5 āĻāĻāĻž frown emoticon
āĻāĻĻā§āĻĻā§āϰ āĻĒāϰā§āϝāύā§āϤ āĻŦā§āĻāϤ⧠āϝāĻĻāĻŋ āĻā§āύ āϏāĻŽāϏā§āϝāĻž āĻĨāĻžāĻā§ āϤāĻŦā§ āĻāĻŦāĻžāϰ āĻĒāĻĄāĻŧā§ āύāĻŋāύāĨ¤
đŖī¸āĻāĻĻāĻžāĻšāϰāĻŖ:- 576 āĻāϰ āĻŦāϰā§āĻāĻŽā§āϞ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰā§āύāĨ¤
đāĻĒā§āϰāĻĨāĻŽ āϧāĻžāĻĒāĻ āϝ⧠āϏāĻāĻā§āϝāĻžāϰ āĻŦāϰā§āĻāĻŽā§āϞ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāϤ⧠āĻšāĻŦā§ āϤāĻžāϰ āĻāĻāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻāĻāĻŋ āĻĻā§āĻāĻŦā§āύāĨ¤ āĻāĻā§āώā§āϤā§āϰ⧠āϤāĻž āĻšāĻā§āĻā§ '6' āĨ¤
đ āĻĻā§āĻŦāĻŋāϤā§āϝāĻŧ āϧāĻžāĻĒāĻ āĻāĻĒāϰā§āϰ āϞāĻŋāϏā§āĻ āĻĨā§āĻā§ āϏ⧠āϏāĻāĻā§āϝāĻžāϰ āĻŦāϰā§āĻā§āϰ āĻļā§āώ āĻ
āĻāĻ 6 āϤāĻžāĻĻā§āϰ āύāĻŋāĻŦā§āύāĨ¤ āĻāĻā§āώā§āϤā§āϰ⧠4 āĻāĻŦāĻ 6 āĨ¤ āĻāĻŦāĻžāϰ āĻŦāϞāĻŋ, āĻā§āϝāĻŧāĻžāϞ āĻāϰā§āύ- 4 āĻāĻŦāĻ 6 āĻāϰ āĻŦāϰā§āĻ āϝāĻĨāĻžāĻā§āϰāĻŽā§ 16 āĻāĻŦāĻ 36; āϝāĻžāĻĻā§āϰ āĻāĻāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ āĻāĻŋāύāĻž '6' āĨ¤ āĻŦā§āĻāϤ⧠āĻĒā§āϰā§āĻā§āύ? āύāĻž āĻŦā§āĻāϞ⧠āĻāĻŦāĻžāϰ āĻĒāĻĄāĻŧā§ āĻĻā§āĻā§āύāĨ¤
đ āϤā§āϤā§āϝāĻŧ āϧāĻžāĻĒāĻ 4 / 6 āϞāĻŋāĻā§ āϰāĻžāĻā§āύ āĻāĻžāϤāĻžāϝāĻŧāĨ¤ (āĻāĻŽāϰāĻž āĻāϤā§āϤāϰā§āϰ āĻāĻāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ āĻĒā§āϝāĻŧā§ āĻā§āĻāĻŋ, āϝāĻž āĻšāĻā§āĻā§ 4 āĻ
āĻĨāĻŦāĻž 6; āĻāĻŋāύā§āϤ⧠āĻā§āύāĻāĻž? āĻāϰ āĻāϤā§āϤāϰ āĻĒāĻžāĻŦā§āύ āĻ
āώā§āĻāĻŽ āϧāĻžāĻĒā§, āĻĒāĻĄāĻŧāϤ⧠āĻĨāĻžāĻā§āύ ...)
đ āĻāϤā§āϰā§āĻĨ āϧāĻžāĻĒāĻ āĻĒā§āϰāĻļā§āύā§āϰ āĻāĻāĻ āĻāϰ āĻĻāĻļāĻā§āϰ āĻ
āĻāĻ āĻŦāĻžāĻĻ āĻĻāĻŋāϝāĻŧā§ āĻŦāĻžāĻāĻŋ āĻ
āĻāĻā§āϰ āĻĻāĻŋāĻā§ āϤāĻžāĻāĻžāύāĨ¤ āĻāĻā§āώā§āϤā§āϰ⧠āĻāĻāĻŋ āĻšāĻā§āĻā§ 5 āĨ¤
đāĻĒāĻā§āĻāĻŽ āϧāĻžāĻĒāĻ āĻāĻĒāϰā§āϰ āϞāĻŋāϏā§āĻ āĻĨā§āĻā§ 5 āĻāϰ āĻāĻžāĻāĻžāĻāĻžāĻāĻŋ āϝ⧠āĻŦāϰā§āĻ āϏāĻāĻā§āϝāĻžāĻāĻŋ āĻāĻā§ āϤāĻžāϰ āĻŦāϰā§āĻāĻŽā§āϞāĻāĻž āύāĻŋāύāĨ¤ āĻāĻā§āώā§āϤā§āϰ⧠4, āϝāĻž āĻāĻŋāύāĻž 2 āĻāϰ āĻŦāϰā§āĻāĨ¤ (āĻāĻŽāϰāĻž āĻāϤā§āϤāϰā§āϰ āĻĻāĻļāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ āĻĒā§āϝāĻŧā§ āĻā§āĻāĻŋ, āϝāĻž āĻšāĻā§āĻā§ 2 )
đāώāώā§āĻ āϧāĻžāĻĒāĻ 2 āĻāϰ āϏāĻžāĻĨā§ āϤāĻžāϰ āĻĒāϰā§āϰ āϏāĻāĻā§āϝāĻž āĻā§āύ āĻāϰā§āύāĨ¤ āĻ
āϰā§āĻĨāĻžā§ 2*3=6
đāϏāĻĒā§āϤāĻŽ āϧāĻžāĻĒāĻ āĻāϤā§āϰā§āĻĨ āϧāĻžāĻĒā§ āĻĒāĻžāĻāϝāĻŧāĻž āϏāĻāĻā§āϝāĻžāĻāĻž (5) āώāώā§āĻ āϧāĻžāĻĒā§ āĻĒāĻžāĻāϝāĻŧāĻž āϏāĻāĻā§āϝāĻžāϰ (6) āĻā§āϝāĻŧā§ āĻā§āĻ āύāĻžāĻāĻŋ āĻŦāĻĄāĻŧ āĻĻā§āĻā§āύāĨ¤ āĻā§āĻ āĻšāϞ⧠āϤā§āϤā§āϝāĻŧ āϧāĻžāĻĒā§ āĻĒāĻžāĻāϝāĻŧāĻž āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻāĻāĻŋ āύā§āĻŦ, āĻŦāĻĄāĻŧ āĻšāϞ⧠āĻŦāĻĄāĻŧāĻāĻŋāĨ¤ (āĻŦā§āĻāϤ⧠āĻĒā§āϰā§āĻā§āύ? āύāϝāĻŧāϤ āĻāĻŦāĻžāϰ āĻĒāĻĄāĻŧā§āύ)
đāĻ
āώā§āĻāĻŽ āϧāĻžāĻĒāĻ āĻāĻŽāĻžāĻĻā§āϰ āĻāĻĻāĻžāĻšāϰāĻŖā§āϰ āĻā§āώā§āϤā§āϰ⧠5 āĻšāĻā§āĻā§ 6 āĻāϰ āĻā§āĻ, āϤāĻžāĻ āĻāĻŽāϰāĻž 4 / 6 āĻŽāϧā§āϝ⧠āĻā§āĻ āϏāĻāĻā§āϝāĻž āĻ
āϰā§āĻĨāĻžā§ 4 āύā§āĻŦāĨ¤
đāύāĻŦāĻŽ āϧāĻžāĻĒāĻ āĻŽāύ⧠āĻāĻā§, āĻĒāĻā§āĻāĻŽ āϧāĻžāĻĒā§ āĻĻāĻļāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ āĻĒā§āϝāĻŧā§āĻāĻŋāϞāĻžāĻŽ 2 āĻāĻŦāĻžāϰ āĻĒā§āϝāĻŧā§āĻāĻŋ āĻāĻāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ 4 āĨ¤ āϤāĻžāĻ āĻāϤā§āϤāϰ āĻšāĻŦā§ 24
āĻāĻ āĻŋāύ āĻŽāύ⧠āĻšāĻā§āĻā§? āĻāĻāĻĻāĻŽāĻ āύāĻž, āĻāϝāĻŧā§āĻāĻāĻž āĻĒā§āϰā§āϝāĻžāĻāĻāĻŋāϏ āĻāϰ⧠āĻĻā§āĻā§āύāĨ¤ āĻāĻŽāĻžāϰ āĻŽāϤ⧠āĻā§āĻŦ āĻŦā§āĻļāĻŋ āϏāĻŽāϝāĻŧ āϞāĻžāĻāĻžāϰ āĻāĻĨāĻž āύāĻžāĨ¤
đŖī¸āĻāĻĻāĻžāĻšāϰāĻŖ:- 4225 āĻāϰ āĻŦāϰā§āĻāĻŽā§āϞ āĻŦā§āϰ āĻāϰā§āύāĨ¤
āĻŽāύ⧠āĻāĻā§ 5 āϝ⧠āĻāĻāĻž āĻāĻŋāϞ? āϏ⧠āĻāĻāĻž āĻĨāĻžāĻāĻžāϝāĻŧ āĻāĻĒāύāĻžāϰ āĻāĻžāĻ āĻāĻŋāύā§āϤ⧠āĻ
āύā§āĻ āϏā§āĻāĻž āĻšāϝāĻŧā§ āĻā§āĻā§āĨ¤ āĻĻā§āĻā§āύ āĻā§āύ⧠āĻĒā§āϰāĻļā§āύā§āϰ āĻļā§āώ āĻ
āĻāĻ 5 āĻšāĻāϝāĻŧāĻžāϝāĻŧ āĻāϤā§āϤāϰā§āϰ āĻāĻāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ āĻšāĻŦā§ āĻ
āĻŦāĻļā§āϝāĻ 5 āĨ¤
- āĻĒā§āϰāĻļā§āύā§āϰ āĻāĻāĻ āĻ āĻĻāĻļāĻā§āϰ āĻāϰā§āϰ āĻ
āĻāĻ āĻŦāĻžāĻĻ āĻĻāĻŋāϝāĻŧā§ āĻĻāĻŋāϞ⧠āĻŦāĻžāĻāĻŋ āĻĨāĻžāĻā§ 42 āĨ¤
- 42 āĻāϰ āϏāĻŦāĻā§āϝāĻŧā§ āĻāĻžāĻā§āϰ āĻĒā§āϰā§āĻŖāĻŦāϰā§āĻ āϏāĻāĻā§āϝāĻž āĻšāĻā§āĻā§ 36, āϝāĻžāϰ āĻŦāϰā§āĻāĻŽā§āϞ āĻšāĻā§āĻā§ 6 āĨ¤ āϤāĻžāĻ āĻāϤā§āϤāϰ āĻšāĻā§āĻā§ 65
_____________________________________________
đ
âšī¸1. āĻĒāĻžāĻāĻ āĻ
āĻā§āĻā§āϰ āĻā§āώā§āĻĻā§āϰāϤāĻŽ āϏāĻāĻā§āϝāĻž āĻāĻŦāĻ āĻāĻžāϰ āĻ
āĻā§āĻā§āϰ āĻŦā§āĻšāϤā§āϤāĻŽ āϏāĻāĻā§āϝāĻžāϰ āĻ
āύā§āϤāϰ āĻāϤ?
āĻāĻ ā§§āĨ¤(ā§§ā§Ļā§Ļā§Ļā§Ļ-⧝⧝⧝⧝)
âšī¸2. ā§Ļ,ā§§,⧍ āĻāĻŦāĻ ā§Š āĻĻā§āĻŦāĻžāϰāĻž āĻāĻ āĻŋāϤ āĻāĻžāϰ āĻ
āĻā§āĻā§āϰ āĻŦā§āĻšāϤā§āϤāĻŽ āĻāĻŦāĻ āĻā§āώā§āĻĻā§āϰāϤāĻŽ āϏāĻāĻā§āϝāĻžāϰ āĻŦāĻŋāϝāĻŧā§āĻāĻĢāϞ-
āĻāĻ ā§¨ā§§ā§Žā§āĨ¤(ā§Šā§¨ā§§ā§Ļ-ā§§ā§Ļā§¨ā§Š)
âšī¸3.āϝāĻĻāĻŋ ā§§ āĻĨā§āĻā§ ā§§ā§Ļā§Ļ āĻĒāϰā§āϝāύā§āϤ āĻāĻŖāύāĻž āĻāϰāĻž āĻšāϝāĻŧ āϤāĻŦā§ āĻāϰ āĻŽāϧā§āϝ⧠āĻāϤāĻāĻŋ ā§Ģ āĻĒāĻžāĻŦā§āĨ¤
āĻāĻ ā§¨ā§ĻāĻāĻŋāĨ¤
*ā§§āĻĨā§āĻā§ ā§§ā§Ļā§Ļ āĻĒāϰā§āϝāύā§āϤ ā§Ļ=ā§§ā§§āĻāĻŋ
ā§§ āĻĨā§āĻā§ ā§§ā§Ļā§Ļ āĻĒāϰā§āϝāύā§āϤ ā§§=⧍⧧āĻāĻŋ
ā§§ āĻĨā§āĻā§ ā§§ā§Ļā§Ļ āĻĒāϰā§āϝāύā§āϤ ⧍āĻĨā§āĻ⧠⧝ āĻĒāϰā§āϝāύā§āϤ āĻ
āĻā§āĻāĻā§āϞ⧠āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāĻŦā§=⧍ā§ĻāĻāĻŋāĨ¤
âšī¸4. ā§ā§¨ āϏāĻāĻā§āϝāĻžāĻāĻŋāϰ āĻŽā§āĻ āĻāĻžāĻāĻ ?
āĻāĻ ā§§ā§¨āĻāĻŋ
*ā§ā§¨=ā§§Ãā§ā§¨=⧍Ãā§Šā§Ŧ=ā§ŠÃ⧍ā§Ē=ā§ĒÃā§§ā§Ž=ā§ŦÃ⧧⧍=ā§ŽÃ⧝
ā§ā§¨ āϏāĻāĻā§āϝāĻžāĻāĻŋ āĻāĻžāĻāĻ=ā§§,⧍,ā§Š,ā§Ē,ā§Ŧ,ā§Ž,⧝,⧧⧍,ā§§ā§Ž,⧍ā§Ē,ā§Šā§Ŧ,ā§ā§¨āĨ¤
âšī¸5. ā§§ āĻĨā§āĻā§ ā§§ā§Ļā§Ļ āĻĒāϰā§āϝāύā§āϤ āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž āĻāϤāĻāĻŋ?
āĻāĻ ā§¨ā§ĢāĻāĻŋāĨ¤
âšī¸6. (ā§Ļ.ā§Ļā§§)^⧍ āĻāϰ āĻŽāĻžāύ āĻā§āύ āĻāĻā§āύāĻžāĻāĻļāĻāĻŋāϰ āϏāĻŽāĻžāύ
āĻāĻ ā§§/ā§§ā§Ļā§Ļā§Ļā§Ļ
*(ā§Ļ.ā§Ļā§§)^⧍=ā§Ļ.ā§Ļā§§Ãā§Ļ.ā§Ļā§§
=ā§Ļ.ā§Ļā§Ļā§Ļā§§
=ā§§/ā§§ā§Ļā§Ļā§Ļā§Ļ
âšī¸7. āĻĻā§āĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāϰ āϏāĻŽāώā§āĻāĻŋ ā§ā§Ļ āĻāĻŦāĻ āĻ
āύā§āϤāϰāĻĢāϞ ā§§ā§Ļ āĻšāϞ⧠āĻŦāĻĄāĻŧ āϏāĻāĻā§āϝāĻžāĻāĻŋ
āĻāĻ ā§Ēā§Ļ
*āĻŦāĻĄāĻŧ āϏāĻāĻā§āϝāĻžāĻāĻŋ=ā§ā§Ļ+ā§§ā§Ļ
=ā§Žā§ĻÃˇā§¨
=ā§Ēā§Ļ
âšī¸8. āĻāĻāĻāĻŋ āϏāĻāĻā§āϝāĻž ā§ā§Ē⧍ āĻĨā§āĻā§ āϝāϤ āĻŦāĻĄāĻŧ ā§Žā§Šā§Ļ āĻĨā§āĻā§ āϤāϤ āĻā§āĻāĨ¤ āϏāĻāĻā§āϝāĻžāĻāĻŋ āĻāϤ?
āĻāĻ ā§ā§Žā§Ŧ
*āύāĻŋāϰā§āĻŖāϝāĻŧā§ āϏāĻāĻā§āϝāĻž=ā§ā§Ē⧍+ā§Žā§Šā§Ļ
=ā§§ā§Ģā§ā§¨Ãˇā§¨
=ā§ā§Žā§Ŧ
âšī¸9.āĻĻā§āĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāϰ āĻā§āĻŖāĻĢāϞ ā§§ā§Ģā§Šā§Ŧ āϏāĻāĻā§āϝāĻž āĻĻā§āĻāĻŋāϰ āϞ āϏāĻž āĻ⧠⧝ā§Ŧ āĻšāϞ⧠āĻ āϏāĻž āĻā§ āĻāϤ?
āĻāĻ ā§§ā§Ŧ
* āϞ āϏāĻž āĻā§ Ã āĻ āϏāĻž āĻā§ = āĻā§āύāĻĢāϞ
⧝ā§ŦÃāĻ āϏāĻž āĻā§ = ā§§ā§Ģā§Šā§Ŧ
āĻ āϏāĻž āĻā§ = ā§§ā§Ģā§Šā§ŦÃˇā§¯ā§Ŧ
=ā§§ā§Ŧ
âšī¸10. āĻ
āύā§āĻĒāĻžāϤ āĻāĻŋ?
āĻāĻ āĻāĻāĻāĻŋ āĻāĻā§āύāĻžāĻāĻļ
âšī¸11. ⧍ā§Ē āĻā§ ā§:ā§Ŧ āĻ
āύā§āĻĒāĻžāϤ⧠āĻŦā§āĻĻā§āϧāĻŋ āĻāϰāϞ⧠āύāϤā§āύ āϏāĻāĻā§āϝāĻž āĻšāĻŦā§?
āĻāĻ ā§¨ā§Ž
*āύāϤā§āύ āϏāĻāĻā§āϝāĻžÃˇā§¨ā§Ē=ā§/ā§Ŧ
āύāϤā§āύ āϏāĻāĻā§āϝāĻž =ā§Ã⧍ā§ĒÃˇā§Ŧ
=ā§Ãā§Ē
=ā§¨ā§Ž
âšī¸12. ā§§ āĻĨā§āĻā§ ā§Ē⧝ āĻĒāϰā§āϝāύā§āϤ āĻā§āϰāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻž āĻā§āϞā§āϰ āĻāĻĄāĻŧ āĻāϤ?
āĻāĻ ā§¨ā§Ģ
*āύāĻŋāϰā§āĻŖāϝāĻŧā§ āĻāĻĄāĻŧ=
āĻļā§āώāĻĒāĻĻ +āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻÃˇā§¨
ā§Ē⧝+ā§§=ā§Ģā§ĻÃˇā§¨=⧍ā§Ģ
âšī¸13.ā§§ āĻĨā§āĻ⧠⧝⧝ āĻĒāϰā§āϝāύā§āϤ āϏāĻāĻā§āϝāĻžāĻā§āϞā§āϰ āϏāĻŽāώā§āĻāĻŋ āĻāϤ?
āĻāĻ ā§Ē⧝ā§Ģā§Ļ
*āϏāĻŽāώā§āĻāĻŋ=n(n+ā§§)Ãˇā§¨
=⧝⧝(⧝⧝+ā§§)Ãˇā§¨
=⧝⧝Ãā§§ā§Ļā§ĻÃˇā§¨
=⧝⧝Ãā§Ģā§Ļ
=ā§Ē⧝ā§Ģā§Ļ
-----------------------------------------------------
đ1 āĻĢā§āĻ = 12 āĻāĻā§āĻāĻŋ
1 āĻāĻ = 3 āĻĢā§āĻ
1 āĻŽāĻžāĻāϞ = ā§§ā§ā§Ŧā§Ļ āĻāĻ
1 āĻŽāĻžāĻāϞ â 1.61 āĻāĻŋāϞā§āĻŽāĻŋāĻāĻžāϰ
1 āĻāĻā§āĻāĻŋ = 2.54 āϏā§āύā§āĻāĻŋāĻŽāĻŋāĻāĻžāϰ
1 āĻĢā§āĻ = 0.3048 āĻŽāĻŋāĻāĻžāϰ
1 āĻŽāĻŋāĻāĻžāϰ = 1,000 āĻŽāĻŋāϞāĻŋāĻŽāĻŋāĻāĻžāϰ
1 āĻŽāĻŋāĻāĻžāϰ = 100 āϏā§āύā§āĻāĻŋāĻŽāĻŋāĻāĻžāϰ
1 āĻāĻŋāϞā§āĻŽāĻŋāĻāĻžāϰ = 1,000 āĻŽāĻŋāĻāĻžāϰ
1 āĻāĻŋāϞā§āĻŽāĻŋāĻāĻžāϰ â 0.62 āĻŽāĻžāĻāϞ
đāĻā§āώā§āϤā§āϰāĻ
1 āĻŦāϰā§āĻ āĻĢā§āĻ = 144 āĻŦāϰā§āĻ āĻāĻā§āĻāĻŋ
1 āĻŦāϰā§āĻ āĻāĻ = 9 āĻŦāϰā§āĻ āĻĢā§āĻ
1 āĻāĻāϰ = 43560 āĻŦāϰā§āĻ āĻĢā§āĻ
đ āĻāϝāĻŧāϤāύāĻ
1 āϞāĻŋāĻāĻžāϰ â 0.264 āĻā§āϝāĻžāϞāύ
1 āĻāύ āĻĢā§āĻ = 1.728 āĻāύ āĻāĻā§āĻāĻŋ
1 āĻāύ āĻāĻ = 27 āĻāύ āĻĢā§āĻ
đ āĻāĻāύāĻ
1 āĻāĻāύā§āϏ â 28.350 āĻā§āϰāĻžāĻŽ
1 cvDÃ= 16 āĻāĻāύā§āϏ
1 cvDà â 453.592 āĻā§āϰāĻžāĻŽ
1 āĻāĻ āĻā§āϰāĻžāĻŽā§āϰ āĻāϰā§āĻāϏāĻšāϏā§āϰāĻžāĻāĻļ = 0.001āĻā§āϰāĻžāĻŽ
1 āĻāĻŋāϞā§āĻā§āϰāĻžāĻŽ = 1,000 āĻā§āϰāĻžāĻŽ
1 āĻāĻŋāϞā§āĻā§āϰāĻžāĻŽ â 2.2 āĻĒāĻžāĻāύā§āĻĄ
1 āĻāύ = 2,200 āĻĒāĻžāĻāύā§āĻĄ
đ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ, āĻŦāĻŋāϞāĻŋāϝāĻŧāύ, āĻā§āϰāĻŋāϞāĻŋāϝāĻŧāύ āĻšāĻŋāϏāĻžāĻŦ
ā§§ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļ āϞāĻā§āώ
ā§§ā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ āĻā§āĻāĻŋ
ā§§ā§Ļā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļ āĻā§āĻāĻŋ
ā§§,ā§Ļā§Ļā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļā§Ļ āĻā§āĻāĻŋ
āĻāĻŦāĻžāϰ,
ā§§,ā§Ļā§Ļā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ= ā§§ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ
ā§§ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļā§Ļ āĻā§āĻāĻŋ
ā§§ā§Ļ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ=ā§§,ā§Ļā§Ļā§Ļ āĻā§āĻāĻŋ
ā§§ā§Ļā§Ļ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļ,ā§Ļā§Ļā§Ļ āĻā§āĻāĻŋ
ā§§,ā§Ļā§Ļā§Ļ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ āϞāĻā§āώ āĻā§āĻāĻŋ
āĻāĻŦāĻžāϰ,
ā§§,ā§Ļā§Ļā§Ļ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ āĻā§āϰāĻŋāϞāĻŋāϝāĻŧāύ
ā§§ āĻā§āϰāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ āϞāĻā§āώ āĻā§āĻāĻŋ
ā§§ā§Ļ āĻā§āϰāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļ āϞāĻā§āώ āĻā§āĻāĻŋ
ā§§ā§Ļā§Ļ āĻā§āϰāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļā§Ļ āϞāĻā§āώ āĻā§āĻāĻŋ
ā§§,ā§Ļā§Ļā§Ļ āĻā§āϰāĻŋāϞāĻŋāϝāĻŧāύ=ā§§,ā§Ļā§Ļā§Ļ āϞāĻā§āώ āĻā§āĻāĻŋāĨ¤
-----------------------------
ā§§ āϰāĻŋāĻŽ = ⧍ā§Ļ āĻĻāĻŋāϏā§āϤāĻž = ā§Ģā§Ļā§Ļ āϤāĻž
ā§§ āĻāϰāĻŋ = ā§§ā§Ŧ āĻāύāĻž ;
ā§§ āĻāύāĻž = ā§Ŧ āϰāϤāĻŋ
ā§§ āĻāĻ = ā§Š āĻĢā§āĻ = ⧍ āĻšāĻžāϤ
ā§§ āĻā§āĻāĻŋ = ā§§ā§Ļā§Ļā§Ļ āĻā§āϰāĻžāĻŽ
ā§§ āĻā§āĻāύā§āĻāĻžāϞ = ā§§ā§Ļā§Ļ āĻā§āĻāĻŋ
ā§§ āĻŽā§āĻā§āϰāĻŋāĻ āĻāύ = ā§§ā§Ļ āĻā§āĻāύā§āĻāĻžāϞ = ā§§ā§Ļā§Ļā§Ļ āĻā§āĻāĻŋ
ā§§ āϞāĻŋāĻāĻžāϰ = ā§§ā§Ļā§Ļā§Ļ āϏāĻŋāϏāĻŋ
ā§§ āĻŽāĻŖ = ā§Ēā§Ļ āϏā§āϰ
ā§§ āĻŦāĻŋāĻāĻž = ⧍ā§Ļ āĻāĻžāĻ āĻž( ā§Šā§Š āĻļāϤāĻžāĻāĻļ) ;
ā§§ āĻāĻžāĻ āĻž = ā§ā§¨ā§Ļ āĻŦāϰā§āĻāĻĢā§āĻ (ā§Žā§Ļ āĻŦāϰā§āĻ āĻāĻ)
1 āĻŽāĻŋāϞāĻŋāϝāĻŧāύ = 10 āϞāĻā§āώ
1 āĻŽāĻžāĻāϞ = 1.61 āĻāĻŋ.āĻŽāĻŋ ;
1 āĻāĻŋ.āĻŽāĻŋ. = 0..62
1 āĻāĻā§āĻāĻŋ = 2.54 āϏā§.āĻŽāĻŋ ;
1 āĻŽāĻŋāĻāĻžāϰ = 39.37 āĻāĻā§āĻāĻŋ
1 āĻā§.āĻāĻŋ = 2.20 āĻĒāĻžāĻāύā§āĻĄ ;
1 āϏā§āϰ = 0.93 āĻāĻŋāϞā§āĻā§āϰāĻžāĻŽ
1 āĻŽā§. āĻāύ = 1000 āĻāĻŋāϞā§āĻā§āϰāĻžāĻŽ ;
1 āĻĒāĻžāĻāύā§āĻĄ = 16 āĻāĻāύā§āϏ
1 āĻāĻ= 3 āĻĢā§āĻ ;
1 āĻāĻāϰ = 100 āĻļāϤāĻ
1 āĻŦāϰā§āĻ āĻāĻŋ.āĻŽāĻŋ.= 247 āĻāĻāϰ
āĻĒā§āϰāĻļā§āύāĻ ā§§ āĻāĻŋāĻŽāĻŋ āϏāĻŽāĻžāύ āĻāϤ āĻŽāĻžāĻāϞ ?
āĻāϤā§āϤāϰāĻ ā§Ļ.ā§Ŧ⧍ āĻŽāĻžāĻāϞāĨ¤
āĻĒā§āϰāĻļā§āύāĻ ā§§ āύā§āĻāĻŋāĻā§āϝāĻžāϞ āĻŽāĻžāĻāϞ⧠āĻāϤ āĻŽāĻŋāĻāĻžāϰ ?
āĻāϤā§āϤāϰāĻ ā§§ā§Žā§Ģā§Š.ā§¨ā§Ž āĻŽāĻŋāĻāĻžāϰāĨ¤
āĻĒā§āϰāĻļā§āύāĻ āϏāĻŽā§āĻĻā§āϰā§āϰ āĻāϞā§āϰ āĻāĻā§āϰāϤāĻž āĻŽāĻžāĻĒāĻžāϰ
āĻāĻāĻ ?
āĻāϤā§āϤāϰāĻ āĻĢā§āϝāĻžāĻĻāĻŽāĨ¤
āĻĒā§āϰāĻļā§āύāĻ ā§§.ā§Ģ āĻāĻā§āĻāĻŋ ā§§ āĻĢā§āĻā§āϰ āĻāϤ āĻ
āĻāĻļ?
āĻāϤā§āϤāϰāĻ ā§§/ā§Ž āĻ
āĻāĻļāĨ¤
ā§§āĻŽāĻžāĻāϞ =ā§§ā§ā§Ŧā§Ļ āĻāĻāĨ¤]
āĻĒā§āϰāĻļā§āύāĻ āĻāĻ āĻŦāϰā§āĻ āĻāĻŋāϞā§āĻŽāĻŋāĻāĻžāϰ āĻāϤ āĻāĻāϰ?
āĻāϤā§āϤāϰāĻ ā§¨ā§Ēā§ āĻāĻāϰāĨ¤
āĻĒā§āϰāĻļā§āύāĻ āĻāĻāĻāĻŋ āĻāĻŽāĻŋāϰ āĻĒāϰāĻŋāĻŽāĻžāύ ā§Ģ āĻāĻžāĻ āĻž āĻšāϞā§,
āϤāĻž āĻāϤ āĻŦāϰā§āĻāĻĢā§āĻ āĻšāĻŦā§?
āĻāϤā§āϤāϰāĻ ā§Šā§Ŧā§Ļā§Ļ āĻŦāϰā§āĻāĻĢā§āĻāĨ¤
āĻĒā§āϰāĻļā§āύāĻ āĻāĻ āĻŦāϰā§āĻ āĻāĻā§āĻāĻŋāϤ⧠āĻāϤ āĻŦāϰā§āĻ
āϏā§āύā§āĻāĻŋāĻŽāĻŋāĻāĻžāϰ?
āĻāϤā§āϤāϰāĻ ā§Ŧ.ā§Ēā§Ģ āϏā§āύā§āĻāĻŋāĻŽāĻŋāĻāĻžāϰāĨ¤
āĻĒā§āϰāĻļā§āύāĻ ā§§ āĻāύ āĻŽāĻŋāĻāĻžāϰ = āĻāϤ āϞāĻŋāĻāĻžāϰ?
āĻāϤā§āϤāϰāĻ ā§§ā§Ļā§Ļā§Ļ āϞāĻŋāĻāĻžāϰāĨ¤
āĻĒā§āϰāĻļā§āύāĻ āĻāĻ āĻā§āϝāĻžāϞāύ⧠āĻāϝāĻŧ āϞāĻŋāĻāĻžāϰ?
āĻāϤā§āϤāϰāĻ ā§Ē.ā§Ģā§Ģ āϞāĻŋāĻāĻžāϰāĨ¤
āĻĒā§āϰāĻļā§āύāĻ ā§§ āϏā§āϰ āϏāĻŽāĻžāύ āĻāϤ āĻā§āĻāĻŋ?
āĻāϤā§āϤāϰāĻ ā§Ļ.ā§¯ā§Š āĻā§āĻāĻŋāĨ¤
āĻĒā§āϰāĻļā§āύāĻ ā§§ āĻŽāĻŖā§ āĻāϤ āĻā§āĻāĻŋ?
āĻāϤā§āϤāϰāĻ ā§Šā§.ā§Šā§¨ āĻā§āĻāĻŋāĨ¤
āĻĒā§āϰāĻļā§āύāĻ ā§§ āĻāύ⧠āĻāϤ āĻā§āĻāĻŋ?
āĻāϤā§āϤāϰāĻ ā§§ā§Ļā§Ļā§Ļ āĻā§āĻāĻŋāĨ¤
āĻĒā§āϰāĻļā§āύāĻ ā§§ āĻā§āĻāĻŋāϤ⧠āĻāϤ āĻĒāĻžāĻāύā§āĻĄ??
āĻāϤā§āϤāϰāĻ ā§¨.⧍ā§Ļā§Ē āĻĒāĻžāĻāύā§āĻĄāĨ¤
āĻĒā§āϰāĻļā§āύāĻ ā§§ āĻā§āĻāύā§āĻāĻžāϞ⧠āĻāϤ āĻā§āĻāĻŋ?
āĻāϤā§āϤāϰāĻ ā§§ā§Ļā§ĻāĻā§āĻāĻŋāĨ¤
--------------------------------
đBritish & U.S British U.S
1 gallons = 4.5434 litres = 4.404
litres
2 gallons = 1 peck = 9.8070 litres
= 8.810 litres
-----------------------------------------
đāĻā§āϝāĻžāϰā§āĻ āĻāĻŋ?.
āĻāϤā§āϤāϰāĻ āĻŽā§āϞā§āϝāĻŦāĻžāύ āĻĒāĻžāĻĨāϰ āĻ āϧāĻžāϤā§āϏāĻžāĻŽāĻā§āϰā§
āĻĒāϰāĻŋāĻŽāĻžāĻĒā§āϰ āĻāĻāĻ āĻā§āϝāĻžāϰā§āĻ āĨ¤
1 āĻā§āϝāĻžāϰā§āĻ =0 .2 āĻā§āϰāĻžāĻŽ
đāĻŦā§āϞ āĻāĻŋ?
āĻāϤā§āϤāϰāĻ āĻĒāĻžāĻ āĻŦāĻž āϤā§āϞāĻž āĻĒāϰāĻŋāĻŽāĻžāĻĒā§āϰ āϏāĻŽāϝāĻŧ âāĻŦā§āϞâ
āĻāĻāĻ āĻšāĻŋāϏāĻžāĻŦā§ āĻŦā§āϝāĻŦāĻšā§āϤ āĻšāϝāĻŧ āĨ¤
1 āĻŦā§āϞ = 3.5 āĻŽāĻŖ (āĻĒā§āϰāĻžāϝāĻŧ) āĨ¤
āĻāĻ āĻĨā§āĻā§, āĻā§āĻĄāĻŧāĻĒā§āĻā§āϰ āĻā§āĻŦāĻŋ āϏā§āĻā§āϞā§āϰ āĻļāĻŋāĻā§āώāĻžāϰā§āĻĨā§āĻĻā§āϰ āĻāĻ-āĻāĻā§āϤāĻŋāϰ āĻāϏāύ⧠āĻŦāϏāĻžāύ⧠āĻšāϝāĻŧā§āĻā§āĨ¤
11th International Yoga Day Celebration of Joorpukur JB school.
Youth & Eco Club for mission life
Bishramganj
Agartala
799103
Be the first to know and let us send you an email when litan saha vlog posts news and promotions. Your email address will not be used for any other purpose, and you can unsubscribe at any time.